The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop.We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7?Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~?95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~?73.0%) transcripts, 50,154 (~?89.7%) SNPs, and 1466 (~?80.3%) SSRs were assigned to a specific location in the corresponding chromosome.This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie.
Journal: BMC genomics
DOI: 10.1186/s12864-019-5878-8
Year: 2019