Menu
July 7, 2019

The effects of signal erosion and core genome reduction on the identification of diagnostic markers.

Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives.A comparative analysis of 1,130 Burkholderia genomes identified unique markers for many named species, including the human pathogens B. pseudomallei and B. mallei Due to core genome reduction and signature erosion, only 38 targets specific to B. pseudomallei/mallei were identified. By using only public genomes, a larger number of markers were identified, due to undersampling, and this larger number represents the potential for false positives. This analysis has implications for the design of diagnostics for other species where the genomic space of the target and/or closely related species is not well defined. Copyright © 2016 Sahl et al.


July 7, 2019

Collection and storage of HLA NGS genotyping data for the 17th International HLA and Immunogenetics Workshop.

For over 50?years, the International HLA and Immunogenetics Workshops (IHIW) have advanced the fields of histocompatibility and immunogenetics (H&I) via community sharing of technology, experience and reagents, and the establishment of ongoing collaborative projects. Held in the fall of 2017, the 17th IHIW focused on the application of next generation sequencing (NGS) technologies for clinical and research goals in the H&I fields. NGS technologies have the potential to allow dramatic insights and advances in these fields, but the scope and sheer quantity of data associated with NGS raise challenges for their analysis, collection, exchange and storage. The 17th IHIW adopted a centralized approach to these issues, and we developed the tools, services and systems to create an effective system for capturing and managing these NGS data. We worked with NGS platform and software developers to define a set of distinct but equivalent NGS typing reports that record NGS data in a uniform fashion. The 17th IHIW database applied our standards, tools and services to collect, validate and store those structured, multi-platform data in an automated fashion. We have created community resources to enable exploration of the vast store of curated sequence and allele-name data in the IPD-IMGT/HLA Database, with the goal of creating a long-term community resource that integrates these curated data with new NGS sequence and polymorphism data, for advanced analyses and applications. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.


July 7, 2019

Moving forward: recent developments for the ferret biomedical research model.

Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model. Copyright © 2018 Albrecht et al.


July 7, 2019

Immunoglobulin gene analysis as a tool for investigating human immune responses.

The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases, and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.© 2018 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.


July 7, 2019

Overview of the germline and expressed repertoires of the TRB genes in Sus scrofa.

The a/ß T cell receptor (TR) is a complex heterodimer that recognizes antigenic peptides and binds to major histocompatibility complex (MH) molecules. Both a and ß chains are encoded by different genes localized on two distinct chromosomal loci: TRA and TRB. The present study employed the recent release of the swine genome assembly to define the genomic organization of the TRB locus. According to the sequencing data, the pig TRB locus spans approximately 400 kb of genomic DNA and consists of 38 TRBV genes belonging to 24 subgroups located upstream of three in tandem TRBD-J-C clusters, which are followed by a TRBV gene in an inverted transcriptional orientation. Comparative analysis confirms that the general organization of the TRB locus is similar among mammalian species, but the number of germline TRBV genes varies greatly even between species belonging to the same order, determining the diversity and specificity of the immune response. However, sequence analysis of the TRB locus also suggests the presence of blocks of conserved homology in the genomic region across mammals. Furthermore, by analysing a public cDNA collection, we identified the usage pattern of the TRBV, TRBD, and TRBJ genes in the adult pig TRB repertoire, and we noted that the expressed TRBV repertoire seems to be broader and more diverse than the germline repertoire, in line with the presence of a high level of TRBV gene polymorphisms. Because the nucleotide differences seems to be principally concentrated in the CDR2 region, it is reasonable to presume that most T cell ß-chain diversity can be related to polymorphisms in pig MH molecules. Domestic pigs represent a valuable animal model as they are even more anatomically, genetically and physiologically similar to humans than are mice. Therefore, present knowledge on the genomic organization of the pig TRB locus allows the collection of increased information on the basic aspects of the porcine immune system and contributes to filling the gaps left by rodent models.


July 7, 2019

Allele-level KIR genotyping of more than a million samples: Workflow, algorithm, and observations.

The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.