Menu
September 22, 2019

Meeting report: 31st International Mammalian Genome Conference, Mammalian Genetics and Genomics: From Molecular Mechanisms to Translational Applications.

High on the Heidelberg hills, inside the Advanced Training Centre of the European Molecular Biology Laboratory (EMBL) campus with its unique double-helix staircase, scientists gathered for the EMBL conference “Mammalian Genetics and Genomics: From Molecular Mechanisms to Translational Applications,” organized in cooperation with the International Mammalian Genome Society (IMGS) and the Mouse Molecular Genetics (MMG) group. The conference attracted 205 participants from 30 countries, representing 6 of the 7 continents-all except Antarctica. It was a richly diverse group of geneticists, clinicians, and bioinformaticians, with presentations by established and junior investigators, including many trainees. From the 24th-27th of October 2017, they shared exciting advances in mammalian genetics and genomics research, from the introduction of cutting-edge technologies to descriptions of translational studies involving highly relevant models of human disease.


September 22, 2019

Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation.

Species-specific, new, or “orphan” genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.© 2018 Werner et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Comparative transcriptome analysis of genes involved in Na+ transport in the leaves of halophyte Halogeton glomeratus.

Compartmentalization of Na+ into vacuoles is considered to be the most critical aspect of salt tolerance in H. glomeratus, an annual, succulent halophyte. Previous analysis of transcriptome involved in the H. glomeratus salt stress response relied on next-generation sequencing technologies that limit the capture of accurately spliced, full-length isoforms. To gain deeper insights into its salt stress response, we used the H. glomeratus Iso-Seq transcriptome database as a reference, and subsequent next-generation sequencing was subjected to various NaCl concentrations of leaves from plants revealed 115 upregulated and 87 downregulated differentially expressed isoforms (core DEIs). The majority of the core DEIs were involved in carbohydrate metabolism and energy production and conversion. In contrast, levels of known isoforms encoding Na+ transporters did not change significantly under salt stress. However, 16 core DEIs of unknown function were predicted to possess transmembrane domains, suggesting that these candidate isoforms could be involved in Na+ transport in H. glomeratus. These results suggest a potential means for identification of novel Na+ transporters, in addition to providing a foundation for further investigation of Na+ transport networks in halophytes. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019

Transcriptional fates of human-specific segmental duplications in brain.

Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.© 2018 Dougherty et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

The state of play in higher eukaryote gene annotation.

A genome sequence is worthless if it cannot be deciphered; therefore, efforts to describe – or ‘annotate’ – genes began as soon as DNA sequences became available. Whereas early work focused on individual protein-coding genes, the modern genomic ocean is a complex maelstrom of alternative splicing, non-coding transcription and pseudogenes. Scientists – from clinicians to evolutionary biologists – need to navigate these waters, and this has led to the design of high-throughput, computationally driven annotation projects. The catalogues that are being produced are key resources for genome exploration, especially as they become integrated with expression, epigenomic and variation data sets. Their creation, however, remains challenging.


September 22, 2019

Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.

Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-a and 37 neurexin-ß mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1a and Nrxn2a. By contrast, Nrxn3a exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1a repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.


September 22, 2019

Full-length transcriptome of Misgurnus anguillicaudatus provides insights into evolution of genus Misgurnus.

Reconstruction and annotation of transcripts, particularly for a species without reference genome, plays a critical role in gene discovery, investigation of genomic signatures, and genome annotation in the pre-genomic era. This study generated 33,330 full-length transcripts of diploid M. anguillicaudatus using PacBio SMRT Sequencing. A total of 6,918 gene families were identified with two or more isoforms, and 26,683 complete ORFs with an average length of 1,497?bp were detected. Totally, 1,208 high-confidence lncRNAs were identified, and most of these appeared to be precursor transcripts of miRNAs or snoRNAs. Phylogenetic tree of the Misgurnus species was inferred based on the 1,905 single copy orthologous genes. The tetraploid and diploid M. anguillicaudatus grouped into a clade, and M. bipartitus showed a closer relationship with the M. anguillicaudatus. The overall evolutionary rates of tetraploid M. anguillicaudatus were significantly higher than those of other Misgurnus species. Meanwhile, 28 positively selected genes were identified in M. anguillicaudatus clade. These positively selected genes may play critical roles in the adaptation to various habitat environments for M. anguillicaudatus. This study could facilitate further exploration of the genomic signatures of M. anguillicaudatus and provide potential insights into unveiling the evolutionary history of tetraploid loach.


September 22, 2019

Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire.

Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach.We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5-6 and 21-25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals.We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and deletions in CDR2 further diversifies the bovine antibody repertoire. In contrast to previous studies, our data indicate that unusually long CDR3 sequences are not unique to IgM antibodies in cattle. Centrally located cysteine residues in bovine CDR3s provide further evidence that disulfide bond formation is likely of structural importance. We hypothesize that network or cluster-based analyses of expressed antibody repertoires from controlled challenge experiments will help identify novel natural antigen binding solutions to specific pathogens of interest.


September 22, 2019

A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.

It is widely acknowledged that transcriptional diversity largely contributes to biological regulation in eukaryotes. Since the advent of second-generation sequencing technologies, a large number of RNA sequencing studies have considerably improved our understanding of transcriptome complexity. However, it still remains a huge challenge for obtaining full-length transcripts because of difficulties in the short read-based assembly. In the present study we employ PacBio single-molecule long-read sequencing technology for whole-transcriptome profiling in rabbit (Oryctolagus cuniculus). We totally obtain 36,186 high-confidence transcripts from 14,474 genic loci, among which more than 23% of genic loci and 66% of isoforms have not been annotated yet within the current reference genome. Furthermore, about 17% of transcripts are computationally revealed to be non-coding RNAs. Up to 24,797 alternative splicing (AS) and 11,184 alternative polyadenylation (APA) events are detected within this de novo constructed transcriptome, respectively. The results provide a comprehensive set of reference transcripts and hence contribute to the improved annotation of rabbit genome.


September 22, 2019

Alternative splice variants of AID are not stoichiometrically present at the protein level in chronic lymphocytic leukemia

Activation-induced deaminase (AID) is a DNA-mutating enzyme that mediates class-switch recombination as well as somatic hypermutation of antibody genes in B cells. Due to off-target activity, AID is implicated in lymphoma development by introducing genome-wide DNA damage and initiating chromosomal translocations such as c-myc/IgH. Several alternative splice transcripts of AID have been reported in activated B cells as well as malignant B cells such as chronic lymphocytic leukemia (CLL). As most commercially available antibodies fail to recognize alternative splice variants, their abundance in vivo, and hence their biological significance, has not been determined. In this study, we assessed the protein levels of AID splice isoforms by introducing an AID splice reporter construct into cell lines and primary CLL cells from patients as well as from WT and TCL1(tg) C57BL/6 mice (where TCL1 is T-cell leukemia/lymphoma 1). The splice construct is 5′-fused to a GFP-tag, which is preserved in all splice isoforms and allows detection of translated protein. Summarizing, we show a thorough quantification of alternatively spliced AID transcripts and demonstrate that the corresponding protein abundances, especially those of splice variants AID-ivs3 and AID-?E4, are not stoichiometrically equivalent. Our data suggest that enhanced proteasomal degradation of low-abundance proteins might be causative for this discrepancy. © 2013 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019

Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full-length transcriptome profiling in barley (Hordeum vulgare L.).

A lack of phosphorus (P) in plants can severely constrain growth and development. Barley, one of the earliest domesticated crops, is extensively planted in poor soil around the world. To date, the molecular mechanisms of enduring low phosphorus, at the transcriptional level, in barley are still unclear. In the present study, two different barley genotypes (GN121 and GN42)-with contrasting phosphorus efficiency-were used to reveal adaptations to low phosphorus stress, at three time points, at the morphological, physiological, biochemical, and transcriptome level. GN121 growth was less affected by phosphorus starvation and recovery than that of GN42. The biomass and inorganic phosphorus concentration of GN121 and GN42 declined under the low phosphorus-induced stress and increased after recovery with normal phosphorus. However, the range of these parameters was higher in GN42 than in GN121. Subsequently, a more complete genome annotation was obtained by correcting with the data sequenced on Illumina HiSeq X 10 and PacBio RSII SMRT platform. A total of 6,182 and 5,270 differentially expressed genes (DEGs) were identified in GN121 and GN42, respectively. The majority of these DEGs were involved in phosphorus metabolism such as phospholipid degradation, hydrolysis of phosphoric enzymes, sucrose synthesis, phosphorylation/dephosphorylation and post-transcriptional regulation; expression of these genes was significantly different between GN121 and GN42. Specifically, six and seven DEGs were annotated as phosphorus transporters in roots and leaves, respectively. Furthermore, a putative model was constructed relying on key metabolic pathways related to phosphorus to illustrate the higher phosphorus efficiency of GN121 compared to GN42 under low phosphorus conditions. Results from this study provide a multi-transcriptome database and candidate genes for further study on phosphorus use efficiency (PUE).


September 22, 2019

SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes.

Numerous methods have been developed to analyse RNA sequencing (RNA-seq) data, but most rely on the availability of a reference genome, making them unsuitable for non-model organisms. Here we present superTranscripts, a substitute for a reference genome, where each gene with multiple transcripts is represented by a single sequence. The Lace software is provided to construct superTranscripts from any set of transcripts, including de novo assemblies. We demonstrate how superTranscripts enable visualisation, variant detection and differential isoform detection in non-model organisms. We further use Lace to combine reference and assembled transcriptomes for chicken and recover hundreds of gaps in the reference genome.


September 22, 2019

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer’s disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant ‘genomic cDNAs’ (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal ‘retro-insertion’ of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer’s disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer’s disease that were absent from healthy neurons. Neuronal gene recombination may allow ‘recording’ of neural activity for selective ‘playback’ of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


September 22, 2019

Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1) gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.