Menu
July 7, 2019

Genome sequence of Polycyclovorans algicola strain TG408, an obligate polycyclic aromatic hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton.

Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. Copyright © 2015 Gutierrez et al.


July 7, 2019

Complete genome sequence of a novel bacterium within the family Rhodocyclaceae that degrades polycyclic aromatic hydrocarbons.

A polycyclic aromatic hydrocarbon-degrading bacterium designated strain Ca6, a member of the family Rhodocyclaceae and a representative of the uncharacterized pyrene group 1 (PG1), was isolated and its genome sequenced. The presence of several genes suspected to be associated with PG1 was confirmed, and additional genes for aromatic compound metabolism were detected. Copyright © 2015 Singleton et al.


July 7, 2019

Complete genome sequences of a clinical isolate and an environmental isolate of Vibrio parahaemolyticus.

Vibrio parahaemolyticus is the leading cause of seafood-borne infections in the United States. We report complete genome sequences for two V. parahaemolyticus strains isolated in 2007, CDC_K4557 and FDA_R31 of clinical and oyster origin, respectively. These two sequences might assist in the investigation of differential virulence of this organism. Copyright © 2015 Lüdeke et al.


July 7, 2019

Draft genome sequence of Thauera sp. strain SWB20, isolated from a Singapore wastewater treatment facility using gel microdroplets.

We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species. Copyright © 2015 Dichosa et al.


July 7, 2019

Draft genome sequence of Kitasatospora griseola strain MF730-N6, a bafilomycin, terpentecin, and satosporin producer.

We report here the draft genome sequence of Kitasatospora griseola strain MF730-N6, a known producer of bafilomycin, terpentecin, and satosporins. The current assembly comprises 8 contigs covering 7.97 Mb. Genome annotation revealed 7,225 protein coding sequences, 100 tRNAs, 40 rRNA genes, and 23 secondary metabolite biosynthetic gene clusters. Copyright © 2015 Arens et al.


July 7, 2019

Complete genome sequence of Mycoplasma flocculare strain Ms42T (ATCC 27399T).

Mycoplasma flocculare is a commensal or low-virulence pathogen of swine. The complete 778,866-bp genome sequence of M. flocculare strain Ms42(T) has been determined, enabling further comparison to genomes of the closely related pathogen Mycoplasma hyopneumoniae. The absence of the p97 and glpD genes may contribute to the attenuated virulence of M. flocculare. Copyright © 2015 Calcutt et al.


July 7, 2019

Complete genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli strain belonging to the sequence type 131 H30R subclade.

Here, we report the completed genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli sequence type 131 (ST131) isolate, MNCRE44. The isolate was obtained in 2012 in Minnesota, USA, from a sputum sample from a hospitalized patient with multiple comorbidities, and it belongs to the H30R sublineage. Copyright © 2015 Johnson et al.


July 7, 2019

Complete genome sequence of Pseudomonas aeruginosa mucoid strain FRD1, isolated from a cystic fibrosis patient.

We announce here the complete genome sequence of the Pseudomonas aeruginosa mucoid strain FRD1, isolated from the sputum of a cystic fibrosis patient. The complete genome of P. aeruginosa FRD1 is 6,712,339 bp. This genome will allow comparative genomics to be used to identify genes associated with virulence, especially those involved in chronic pulmonary infections. Copyright © 2015 Silo-Suh et al.


July 7, 2019

Best practices in insect genome sequencing: What works and what doesn’t.

The last decade of decreasing DNA sequencing costs and proliferating sequencing services in core labs and companies has brought the de-novo genome sequencing and assembly of insect species within reach for many entomologists. However, sequence production alone is not enough to generate a high quality reference genome, and in many cases, poor planning can lead to extremely fragmented genome assemblies preventing high quality gene annotation and other desired analyses. Insect genomes can be problematic to assemble, due to combinations of high polymorphism, inability to breed for genome homozygocity, and small physical sizes limiting the quantity of DNA able to be isolated from a single individual. Recent advances in sequencing technology and assembly strategies are enabling a revolution for insect genome reference sequencing and assembly. Here we review historical and new genome sequencing and assembly strategies, with a particular focus on their application to arthropod genomes. We highlight both the need to design sequencing strategies for the requirements of the assembly software, and new long-read technologies that are enabling a return to traditional assembly approaches. Finally, we compare and contrast very cost effective short read draft genome strategies with the long read approaches that although entailing additional cost, bring a higher likelihood of success and the possibility of archival assembly qualities approaching that of finished genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.