Menu
July 7, 2019

Complete genome sequence of Vibrio campbellii LMB 29 isolated from red drum with four native megaplasmids.

Vibrio spp. are the most common pathogens for animals reared in aquaculture. Vibrio campbellii, which is often involved in shrimp, fish and mollusks diseases, is widely distributed in the marine environment worldwide, but our knowledge about its pathogenesis and antimicrobial resistance is very limited. The existence of this knowledge gap is at least partially because that V. campbellii was originally classified as Vibrio harveyi, and the detailed information of its comparative genome analysis to other Vibrio spp. is currently lacking. In this study, the complete genome of a V. campbellii predominant strain, LMB29, was determined by MiSeq in conjunction with PacBio SMRT sequencing. This genome consists of two circular DNA chromosomes and four megaplasmids. Comparative genome analysis indicates that LMB29 shares a 96.66% similarity (average nucleotide identity) with the V. campbellii ATCC strain BAA-1116 based on a 75% AF (average fraction) calculations, and its functional profile is very similar to V. campbellii E1 and V. campbellii CAIM115. Both type III secretion system (T3SS) and type VI secretion system (T6SS), along with the tlh gene which encodes a thermolabile hemolysin, are present in LMB29 which may contribute to the bacterial pathogenesis. The virulence of this strain was experimental confirmed by performing a LDH assay on a fish cell infection model, and cell death was observed as early as within 3 h post infection. Thirty-seven antimicrobial resistance genes (>45% identity) were predicted in LMB29 which includes a novel rifampicin ADP ribosyltransferase, arr-9, in plasmid pLMB157. The gene arr-9 was predicted on a genomic island with horizontal transferable potentials which may facilitate the rifampicin resistance dissemination. Future researches are needed to explore the pathogenesis of V. campbellii LMB29, but the availability of this genome sequence will certainly aid as a basis for further analysis.


July 7, 2019

Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction.

To understand the dynamics behind the worldwide spread of the mcr-1 gene, we determined the population structure of Escherichia coli and of mobile genetic elements (MGEs) carrying the mcr-1 gene. After a systematic review of the literature we included 65 E. coli whole genome sequences (WGS), adding 6 recently sequenced travel related isolates, and 312 MLST profiles. We included 219 MGEs described in 7 Enterobacteriaceae species isolated from human, animal and environmental samples. Despite a high overall diversity, 2 lineages were observed in the E. coli population that may function as reservoirs of the mcr-1 gene, the largest of which was linked to ST10, a sequence type known for its ubiquity in human faecal samples and in food samples. No genotypic clustering by geographical origin or isolation source was observed. Amongst a total of 13 plasmid incompatibility types, the IncI2, IncX4 and IncHI2 plasmids accounted for more than 90% of MGEs carrying the mcr-1 gene. We observed significant geographical clustering with regional spread of IncHI2 plasmids in Europe and IncI2 in Asia. These findings point towards promiscuous spread of the mcr-1 gene by efficient horizontal gene transfer dominated by a limited number of plasmid incompatibility types.


July 7, 2019

pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida.

This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All of these resistance genes were associated with mobile elements, and were embedded within the two MDR regions. blaIMP-45 and armA coexisted in a Tn1403-Tn1548 region, which was generated from homologous recombination of Tn1403- and Tn1548-like transposons. The second copy of armA was a component of the ISCR28-armA-?ISCR28 structure, representing a novel armA vehicle. This vehicle was located within In48, which was related to In363 and In1058. Data presented here provide a deeper insight into the evolutionary history of SY153, especially in regard to how it became extensively drug-resistant.


July 7, 2019

Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.

The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.© 2017 John Wiley & Sons Ltd.


July 7, 2019

Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite.

Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL(-1) chloride ion and chalcopyrite up to 18gL(-1) chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of multidrug-resistant Staphylococcus sciuri strain SNUDS-18 isolated from a farmed duck in South Korea.

This study aimed to determine the complete genome sequence of multidrug-resistant Staphylococcus sciuri strain SNUDS-18 isolated from a farmed duck in South Korea.Genomic DNA was sequenced using a PacBio RS II system. The obtained genome was annotated and antimicrobial resistance and virulence genes were identified.The sequenced genome possessed a mecA homologue (mecA1) that was almost identical to that of other oxacillin-susceptible S. sciuri strains, whereas the staphylococcal cassette chromosome mec (SCCmec) was not detected. Moreover, various antimicrobial resistance genes conferring resistance to ß-lactams, aminoglycosides, phenicols, tetracycline and macrolide-lincosamide-streptogramin B (MLSB) antimicrobials were identified.The SNUDS-18 genome and its associated genomic data will provide important insights into the biodiversity of the S. sciuri group as well as valuable information for the control of this potential pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019

Complete genome sequence of a colistin-resistant Escherichia coli strain harboring mcr-1 on an IncHI2 plasmid in the United States.

We report here the incidental detection and complete genome sequence of a urinary Escherichia coli strain harboring mcr-1 and resistant to colistin in a New York patient returning from Portugal in 2016. This strain, with sequence type 1485 (ST1485), was a non-extended-spectrum beta-lactamase (ESBL) and non-carbapenemase producer and carried the mcr-1 gene on an IncHI2 plasmid. Copyright © 2017 Gilrane et al.


July 7, 2019

Comparative analysis of the radish genome with Brassica genomes

Raphanus sativus L. includes an annual root vegetable crop, radish, and diverse wild species. R. sativus has a long history of domestication, but its phylogenetic position in the tribe Brassiceae is controversial. A comprehensive analysis of the R. sativus genome will provide fundamental information about the structure of its genome, evolutionary features of polyploidy, and significant insight for phylogenetic delimitation of this species. Diverse genomic resources, including a high-density genetic map, clone libraries, cytogenetic data, and transcriptome data, have been developed to sequence the genome. Recently, the R. sativus cv. ‘WK10039’ (2n = 18, 510.8 Mb) genome was sequenced and assembled into nine chromosome pseudomolecules spanning >98% of the gene space. Comparative mapping of the tPCK-like ancestral genome based on conserved ortholog set markers and proteome comparison revealed that the R. sativus genome has intermediate characteristics between the Brassica A/C and B genomes with triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between R. sativus and diploid Brassica species provide genomic evidence for species delimitation of R. sativus and reconstruction of the mesohexaploid ancestral genome.


July 7, 2019

Genomics of parallel adaptation at two timescales in Drosophila.

Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus.


July 7, 2019

Genetic maps and whole genome sequences of radish

Radish, Raphanus sativus L., is a member of Brassicaceae, to which Arabidopsis thaliana, a model plant in plant biology, belongs, as do other Brassica species including important crops. However, genetic and genomic studies of radish have been behind those of Arabidopsis and Brassica. In this decade, much effort has been made to develop genetic resources for radish, e.g., DNA markers, genetic maps, and whole genome sequences. Studies using the obtained information have revealed the genome structure of radish in terms of ancestral karyotype and have also prompted the identification of genes for agronomically important traits in radish through a map-based cloning strategy and quantitative trait locus analysis. In this chapter, we review the evolving development of radish genetic map in the past 15 years and the current status of genome sequencing of radish. We also introduce the latest strategy for the construction of a high-density genetic map using next-generation sequencing technology and propose a prospective direction of genetics and genomics research in radish which would be helpful for researchers and breeders in their efforts to promote radish breeding programs efficiently.


July 7, 2019

Meeting report on experimental approaches to evolution and ecology using yeast and other model systems.

The fourth EMBO-sponsored conference on Experimental Approaches to Evolution and Ecology Using Yeast and Other Model Systems (https://www.embl.de/training/events/2016/EAE16-01/), was held at the EMBL in Heidelberg, Germany, October 19-23, 2016. The conference was organized by Judith Berman (Tel Aviv University), Maitreya Dunham (University of Washington), Jun-Yi Leu (Academia Sinica), and Lars Steinmetz (EMBL Heidelberg and Stanford University). The meeting attracted ~120 researchers from 28 countries and covered a wide range of topics in the fields of genetics, evolutionary biology, and ecology with a unifying focus on yeast as a model system. Attendees enjoyed the Keith Haring inspired yeast florescence microscopy artwork (Figure 1), a unique feature of the meeting since its inception, and the one-minute flash talks that catalyzed discussions at two vibrant poster sessions. The meeting coincided with the 20th anniversary of the publication describing the sequence of the first eukaryotic genome, Saccharomyces cerevisiae (Goffeau et al. 1996). Many of the conference talks focused on important questions about what is contained in the genome, how genomes evolve, and the architecture and behavior of communities of phenotypically and genotypically diverse microorganisms. Here, we summarize highlights of the research talks around these themes. Nearly all presentations focused on novel findings, and we refer the reader to relevant manuscripts that have subsequently been published. Copyright © 2017, G3: Genes, Genomes, Genetics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.