Menu
July 7, 2019

On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data.

To benchmark algorithms for automated plasmid sequence reconstruction from short-read sequencing data, we selected 42 publicly available complete bacterial genome sequences spanning 12 genera, containing 148 plasmids. We predicted plasmids from short-read data with four programs (PlasmidSPAdes, Recycler, cBar and PlasmidFinder) and compared the outcome to the reference sequences. PlasmidSPAdes reconstructs plasmids based on coverage differences in the assembly graph. It reconstructed most of the reference plasmids (recall=0.82), but approximately a quarter of the predicted plasmid contigs were false positives (precision=0.75). PlasmidSPAdes merged 84?% of the predictions from genomes with multiple plasmids into a single bin. Recycler searches the assembly graph for sub-graphs corresponding to circular sequences and correctly predicted small plasmids, but failed with long plasmids (recall=0.12, precision=0.30). cBar, which applies pentamer frequency analysis to detect plasmid-derived contigs, showed a recall and precision of 0.76 and 0.62, respectively. However, cBar categorizes contigs as plasmid-derived and does not bin the different plasmids. PlasmidFinder, which searches for replicons, had the highest precision (1.0), but was restricted by the contents of its database and the contig length obtained fromde novoassembly (recall=0.36). PlasmidSPAdes and Recycler detected putative small plasmids (<10?kbp), which were also predicted as plasmids by cBar, but were absent in the original assembly. This study shows that it is possible to automatically predict small plasmids. Prediction of large plasmids (>50?kbp) containing repeated sequences remains challenging and limits the high-throughput analysis of plasmids from short-read whole-genome sequencing data.


July 7, 2019

Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395.

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called ‘international’ clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1 Mbp), with most of its 1555 accessory genes borne by either genomic islands (GIs,n=48) or integrative and conjugative elements (ICEs,n=5). DHS01 is multidrug resistant mostly due to chromosomal mutations. It displayed signatures of adaptation to chronic infection in part due to the loss of a 131 kbp chromosomal fragment. Four GIs were specific to the clone ST395 and contained genes involved in metabolism (GI-4), in virulence (GI-6) and in resistance to copper (GI-7). GI-7 harboured an array of six copper transporters and was shared with non-pathogenicPseudomonassp. retrieved from copper-contaminated environments. Copper resistance was confirmed phenotypically in all other ST395 isolates and possibly accounted for the spreading capability of the clone in hospital outbreaks, where water networks have been incriminated. This suggests that genes transferred from copper-polluted environments may have favoured the implantation and spread of the international cloneP. aeruginosaST395 in hospital settings.


July 7, 2019

Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis.

Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss-cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria-plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant-cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria-feathermoss symbiosis.


July 7, 2019

A 3-way hybrid approach to generate a new high-quality chimpanzee reference genome (Pan_tro_3.0).

The chimpanzee is arguably the most important species for the study of human origins. A key resource for these studies is a high-quality reference genome assembly; however, as with most mammalian genomes, the current iteration of the chimpanzee reference genome assembly is highly fragmented. In the current iteration of the chimpanzee reference genome assembly (Pan_tro_2.1.4), the sequence is scattered across more then 183 000 contigs, incorporating more than 159 000 gaps, with a genome-wide contig N50 of 51 Kbp. In this work, we produce an extensive and diverse array of sequencing datasets to rapidly assemble a new chimpanzee reference that surpasses previous iterations in bases represented and organized in large scaffolds. To this end, we show substantial improvements over the current release of the chimpanzee genome (Pan_tro_2.1.4) by several metrics, such as increased contiguity by >750% and 300% on contigs and scaffolds, respectively, and closure of 77% of gaps in the Pan_tro_2.1.4 assembly gaps spanning >850 Kbp of the novel coding sequence based on RNASeq data. We further report more than 2700 genes that had putatively erroneous frame-shift predictions to human in Pan_tro_2.1.4 and show a substantial increase in the annotation of repetitive elements. We apply a simple 3-way hybrid approach to considerably improve the reference genome assembly for the chimpanzee, providing a valuable resource for the study of human origins. Furthermore, we produce extensive sequencing datasets that are all derived from the same cell line, generating a broad non-human benchmark dataset.© The Author 2017. Published by Oxford University Press.


July 7, 2019

Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter.

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Complete genome sequence of Bacillus altitudinis P-10, a potential bioprotectant against Xanthomonas oryzae pv. oryzae, isolated from rice rhizosphere in Java, Indonesia.

Bacillus altitudinis P-10 was isolated from the rhizosphere of rice grown in an organic rice field and provides strong antagonism against the bacterial blight caused by Xanthomonas oryzae pv. oryzae in rice. Herein, we provide the complete genome sequence and a possible explanation of the antibiotic function of the P-10 strain.


July 7, 2019

High-quality draft genome sequence of Streptomyces agglomeratus 5-1-8 with strong anti-MRSA ability, isolated from the frozen soil of Tibet in China

Streptomyces agglomeratus 5-1-8 with strong anti methicillin-resistant Staphylococcus aureus (MRSA) ability, isolated from the frozen soil of Tibet in China, has a strong ability to kill the multi-drugs-resistant MRSA. To identify the second-ary metabolism ability of this strain, we describe here the phenotypic characteristics of this strain, along with its high-quality draft genome sequence, its annotation, and analysis. The 7.1M draft genome encodes 6,284 putative open reading frames (ORFs), of which 4,416 ORFs were assigned with clusters of orthologous genes (COG) categories. Also, 65 tRNA genes and 24 rRNA operons were identified. The genome contains 12 gene clusters involved in antibiotics production and 1 gene cluster involved in anticancer-compounds production; 4 gene clusters belong to polyketides and nonribosomal peptides, 1 gene cluster belong to the butyrolactone, 4 gene clusters belong to the bacteriocin or lantipeptide, and 3 gene clusters belong to the others. This genome-sequence data will facilitate efforts to probe the potential of new antibiotics to kill multi-drugs-resistant MRSA.


July 7, 2019

Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae isolated from plants, animals and humans

Objective. Due to the fact that K. variicola, K. quasipneumoniae and K. pneumoniae are closely related bacterial species, misclassification can occur due to mistakes either in normal biochemical tests or during submission to public databases. The objective of this work was to identify K. variicola and K. quasipneumoniae genomes misclassified in GenBank database. Materials and methods. Both rpoB phylogenies and average nucleotide identity (ANI) were used to identify a significant number of misclassified Klebsiella spp. genomes. Results. Here we report an update of K. variicola and K. quasipneumoniae genomes correctly classified and a list of isolated genomes obtained from humans, plants, animals and insects, described originally as K. pneumoniae or K. variicola, but known now to be misclassified. Conclusions. This work contributes to recognize the extensive presence of K. variicola and K. quasipneumoniae isolates in diverse sites and samples.


July 7, 2019

Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster.

Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle’s maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.


July 7, 2019

On the importance of homology in the age of phylogenomics

Homology is perhaps the most central concept of phylogenetic biology. Molecular systematists have traditionally paid due attention to the homology statements that are implied by their alignments of orthologous sequences, but some authors have suggested that manual gene-by-gene curation is not sustainable in the phylogenomics era. Here, we show that there are multiple ways to efficiently screen for and detect homology errors in phylogenomic data sets. Application of these screening approaches to two phylogenomic data sets, one for birds and another for mammals, shows that these data are replete with homology errors including alignments of different exons to each other, alignments of exons to introns, and alignments of paralogues to each other. The extent of these homology errors weakens the conclusions of studies based on these data sets. Despite advances in automated phylogenomic pipelines, we contend that much of the long, difficult, and sometimes tedious work of systematics is still required to guard against pervasive homology errors. This conclusion is underscored by recent studies that show that just a few outlier genes can impact phylogenetic results at short, tightly spaced internodes that are deep in the Tree of Life. The view that widespread DNA sequence alignment errors are not a major concern for rigorous systematic research is not tenable. If a primary goal of phylogenomics is to resolve the most challenging phylogenetic problems with the abundant data that are now available, researchers must employ effective procedures to screen for and correct homology errors prior to performing downstream phylogenetic analyses.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.