Menu
July 7, 2019

COSINE: non-seeding method for mapping long noisy sequences.

Third generation sequencing (TGS) are highly promising technologies but the long and noisy reads from TGS are difficult to align using existing algorithms. Here, we present COSINE, a conceptually new method designed specifically for aligning long reads contaminated by a high level of errors. COSINE computes the context similarity of two stretches of nucleobases given the similarity over distributions of their short k-mers (k = 3-4) along the sequences. The results on simulated and real data show that COSINE achieves high sensitivity and specificity under a wide range of read accuracies. When the error rate is high, COSINE can offer substantial advantages over existing alignment methods.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019

Comparative whole-genomic analysis of an ancient L2 lineage Mycobacterium novel phylogenetic clade and common genetic determinants of hypervirulent strains.

Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-a than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results: Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.


July 7, 2019

A feast of malaria parasite genomes.

The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.


July 7, 2019

A recurrence-based approach for validating structural variation using long-read sequencing technology.

Although numerous algorithms have been developed to identify structural variations (SVs) in genomic sequences, there is a dearth of approaches that can be used to evaluate their results. This is significant as the accurate identification of structural variation is still an outstanding but important problem in genomics. The emergence of new sequencing technologies that generate longer sequence reads can, in theory, provide direct evidence for all types of SVs regardless of the length of the region through which it spans. However, current efforts to use these data in this manner require the use of large computational resources to assemble these sequences as well as visual inspection of each region. Here we present VaPoR, a highly efficient algorithm that autonomously validates large SV sets using long-read sequencing data. We assessed the performance of VaPoR on SVs in both simulated and real genomes and report a high-fidelity rate for overall accuracy across different levels of sequence depths. We show that VaPoR can interrogate a much larger range of SVs while still matching existing methods in terms of false positive validations and providing additional features considering breakpoint precision and predicted genotype. We further show that VaPoR can run quickly and efficiency without requiring a large processing or assembly pipeline. VaPoR provides a long read-based validation approach for genomic SVs that requires relatively low read depth and computing resources and thus will provide utility with targeted or low-pass sequencing coverage for accurate SV assessment. The VaPoR Software is available at: https://github.com/mills-lab/vapor.© The Authors 2017. Published by Oxford University Press.


July 7, 2019

Nitrogen fixation genes and nitrogenase activity of the non-heterocystous cyanobacterium Thermoleptolyngbya sp. O-77.

Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 µmol m-2 s-1 suppressed the effects of illumination.


July 7, 2019

The draft genome sequence of Pectobacterium carotovorum subsp. actinidiae KKH3 that infects kiwi plant and potential bioconversion applications

Pectobacterium carotovorum subsp. actinidiae KKH3 is an Enterobacteriaceae bacterial pathogen that infects kiwi plants, causing canker-like symptoms that pose a threat to the kiwifruit industry. Because the strain was originally isolated from woody plants and possesses numerous plant cell wall-degrading enzymes, this draft genome report provides insight into possible bioconversion applications, as well as a better understanding of this important plant pathogen.


July 7, 2019

Complete genome sequence of the Vibrio vulnificus strain VV2014DJH, a human-pathogenic bacterium isolated from a death case in China.

Vibrio vulnificus, an opportunistic pathogen, is the causative agent of life-threatening septicemia and severe wound infections. However, the pathogenicity and virulence factors of V. vulnificus are not fully understood. Here we report the complete genome sequence of V. vulnificus VV2014DJH, which was isolated from a death case.The genome of the V. vulnificus VV2014DJH contains two circular chromosomes with a mean G+C content of 46.8%, but does not consists of any plasmids. The chromosome I and chromosome II consist of 3,303,590 and 1,770,972 bp, respectively. In addition, the genome consists of 4617 protein coding genes, 172 RNA genes and type I, II and III secretion systems were predicted.In this study, the genomic information of the V. vulnificus VV2014DJH has been described. The information would contribute to the increasing scope and depth of Vibrio genome database, and provide insights into the pathogenicity and virulence factors of V. vulnificus.


July 7, 2019

Unlocking the biological potential of Euglena gracilis: evolution, cell biology and significance to parasitism

Photosynthetic euglenids are major components of aquatic ecosystems and relatives of trypanosomes. Euglena gracilis has considerable biotechnological potential and great adaptability, but exploitation remains hampered by the absence of a comprehensive gene catalogue. We address this by genome, RNA and protein sequencing: the E. gracilis genome is >2Gb, with 36,526 predicted proteins. Large lineage-specific paralog families are present, with evidence for flexibility in environmental monitoring, divergent mechanisms for metabolic control, and novel solutions for adaptation to extreme environments. Contributions from photosynthetic eukaryotes to the nuclear genome, consistent with the shopping bag model are found, together with transitions between kinetoplastid and canonical systems. Control of protein expression is almost exclusively post-transcriptional. These data are a major advance in understanding the nuclear genomes of euglenids and provide a platform for investigating the contributions of E. gracilis and its relatives to the biosphere.


July 7, 2019

The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes.

Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019

The complete mitochondrial genome of Wonwhang (Pyrus pyrifolia)

This is a de novo assembly and annotation of a complete mitochondrial genome from Pyrus pyrifolia in the family Rosaceae. The complete mitochondrial genome of P. pyrifolia was assembled from PacBio RSII P6-C4 sequencing reads. The circular genome was 458,873?bp in length, containing 39 protein-coding genes, 23 tRNA genes and three rRNA genes. The nucleotide composition was A (27.5%), T (27.3%), G (22.6%) and C (22.6%) with GC content of 45.2%. Most of protein-coding genes use the canonical start codon ATG, whereas nad1, cox1, matR and rps4 use ACG, mttB uses ATT, rpl16 and rps19 uses GTG. The stop codon is also common in all mitochondrial genes. The phylogenetic analysis showed that P. pyrifolia was clustered with the Malus of Rosaceae family. Maximum-likelihood analysis suggests a clear relationship of Rosids and Asterids, which support the traditional classification.


July 7, 2019

Genomic clues to the parental origin of the wild flowering cherry Prunus yedoensis var. nudiflora (Rosaceae)

Prunus yedoensis Matsumura is one of the popular ornamental flowering cherry trees native to northeastern Asia, and its wild populations have only been found on Jeju Island, Korea. Previous studies suggested that wild P. yedoensis (P. yedoensis var. nudiflora) is a hybrid species; however, there is no solid evidence on its exact parental origin and genomic organization. In this study, we developed a total of 38 nuclear gene-based DNA markers that can be universally amplifiable in the Prunus species using 586 Prunus Conserved Orthologous Gene Set (Prunus COS). Using the Prunus COS markers, we investigated the genetic structure of wild P. yedoensis populations and evaluated the putative parental species of wild P. yedoensis. Population structure and phylogenetic analysis of 73 wild P. yedoensis accessions and 54 accessions of other Prunus species revealed that the wild P. yedoensis on Jeju Island is a natural homoploid hybrid. Sequence-level comparison of Prunus COS markers between species suggested that wild P. yedoensis might originate from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura. Moreover, approximately 81% of the wild P. yedoensis accessions examined were likely F1 hybrids, whereas the remaining 19% were backcross hybrids resulting from additional asymmetric introgression of parental genotypes. These findings suggest that complex hybridization of the Prunus species on Jeju Island can produce a range of variable hybrid offspring. Overall, this study makes a significant contribution to address issues of the origin, nomenclature, and genetic relationship of ornamental P. yedoensis.


July 7, 2019

Complete genome sequence of Spirosoma pulveris JSH 5-14 T, a bacterium isolated from a dust sample

Dust particles from the deserts and semiarid lands in northern China cause pollution that increase the burden of allergic disease particularly in the urban population of East Asia. Dust particles that carried with windstorm are associated with microbial populations, which include virus, bacteria, and fungi. Spirosoma pulveris JSH 5-14T isolated from the gamma ray-irradiated dust sample collected at Nonsan, Chungnam province, South Korea and showed resistance against gamma and UV radiation. We carried out the whole genome sequencing to understand insight of radiation resistance and their mechanisms of survival. The whole genome of strain JSH 5-14T is comprised of 7,188,680 bp (G+C content of 50.50%) including 5,896 protein-coding genes and 52 RNA genes. The genome analysis of strain JSH 5-14T showed the presence of several genes involved in DNA repair pathways and defense mechanism against irradiation. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.


July 7, 2019

Mechanisms of adaptive divergence and speciation in Littorina saxatilis: Integrating knowledge from ecology and genetics with new data emerging from genomic studies

New opportunities to understand marine speciation and evolution of local adaptation come with genomic approaches and with the development of comprehensive model systems. The marine snail Littorina saxatilis is one example of a developing marine model for investigating genetic mechanisms of rapid divergence and evolution in natural systems. This species is strongly polymorphic and shows formation of local ecotypes throughout its distribution. Support is strong for primary (in situ) and parallel formation of reproductively semi-isolated ecotypes with contact zones between heterogeneous intertidal microhabitats. This makes this species an ideal organism for gaining new insights into the interplay of divergent selection, gene flow and genetic drift during local adaptation and speciation. A relatively well-resolved draft genome and a genetic map describing 17 linkage groups (“chromosomes”) are key tools for investigating the role of structural genomic variation, such as inversions, gene duplications and translocations. Whole genome re-sequencing of pools of individuals and the first comprehensive study of a contact zone contribute direct information on selection and barriers to gene flow present in specific regions of the genome. Linking selection at the phenotypic level to patterns obser ved in the genome is under way by quantitative trait loci mapping and annotation of candidate genes, while the role of single mutations on individual fitness will have to await development of gene manipulation tools. The features of the snail system facilitate the study of local adaptation and speciation and its genomic basis, but the underlying evolutionary processes are expected to be similar in other organisms, and hence this species is a useful model.


July 7, 2019

The state of whole-genome sequencing

Over the last decade, a technological paradigm shift has slashed the cost of DNA sequencing by over five orders of magnitude. Today, the cost of sequencing a human genome is a few thousand dollars, and it continues to fall. Here, we review the most cost-effective platforms for whole-genome sequencing (WGS) as well as emerging technologies that may displace or complement these. We also discuss the practical challenges of generating and analyzing WGS data, and how WGS has unlocked new strategies for discovering genes and variants underlying both rare and common human diseases.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.