Menu
July 7, 2019  |  

Complete genome sequence and comparative genomics of the golden pompano (Trachinotus ovatus) pathogen, Vibrio harveyistrain QT520.

Vibrio harveyi is a Gram-negative, halophilic bacterium that is an opportunistic pathogen of commercially farmed marine vertebrate species. To understand the pathogenicity of this species, the genome of V. harveyi QT520 was analyzed and compared to that of other strains. The results showed the genome of QT520 has two unique circular chromosomes and three endogenous plasmids, totaling 6,070,846 bp with a 45% GC content, 5,701 predicted ORFs, 134 tRNAs and 37 rRNAs. Common virulence factors, including ACF, IlpA, OmpU, Flagellin, Cya, Hemolysin and MARTX, were detected in the genome, which are likely responsible for the virulence of QT520. The results of genomes comparisons with strains ATCC 33843 (392 (MAV)) and ATCC 43516 showed that greater numbers genes associated with types I, II, III, IV and VI secretion systems were detected in QT520 than in other strains, suggesting that QT520 is a highly virulent strain. In addition, three plasmids were only observed in the complete genome sequence of strain QT520. In plasmid p1 of QT520, specific virulence factors (cyaB, hlyB and rtxA) were identified, suggesting that the pathogenicity of this strain is plasmid-associated. Phylogenetic analysis of 12 complete Vibrio sp. genomes using ANI values, core genes and MLST revealed that QT520 was most closely related to ATCC 33843 (392 (MAV)) and ATCC 43516, suggesting that QT520 belongs to the species V. harveyi. This report is the first to describe the complete genome sequence of a V. harveyi strain isolated from an outbreak in a fish species in China. In addition, to the best of our knowledge, this report is the first to compare the V. harveyi genomes of several strains. The results of this study will expand our understanding of the genome, genetic characteristics, and virulence factors of V. harveyi, setting the stage for studies of pathogenesis, diagnostics, and disease prevention.


July 7, 2019  |  

Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395.

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called ‘international’ clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1 Mbp), with most of its 1555 accessory genes borne by either genomic islands (GIs,n=48) or integrative and conjugative elements (ICEs,n=5). DHS01 is multidrug resistant mostly due to chromosomal mutations. It displayed signatures of adaptation to chronic infection in part due to the loss of a 131 kbp chromosomal fragment. Four GIs were specific to the clone ST395 and contained genes involved in metabolism (GI-4), in virulence (GI-6) and in resistance to copper (GI-7). GI-7 harboured an array of six copper transporters and was shared with non-pathogenicPseudomonassp. retrieved from copper-contaminated environments. Copper resistance was confirmed phenotypically in all other ST395 isolates and possibly accounted for the spreading capability of the clone in hospital outbreaks, where water networks have been incriminated. This suggests that genes transferred from copper-polluted environments may have favoured the implantation and spread of the international cloneP. aeruginosaST395 in hospital settings.


July 7, 2019  |  

Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter.

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Complete genome sequence of Bacillus altitudinis P-10, a potential bioprotectant against Xanthomonas oryzae pv. oryzae, isolated from rice rhizosphere in Java, Indonesia.

Bacillus altitudinis P-10 was isolated from the rhizosphere of rice grown in an organic rice field and provides strong antagonism against the bacterial blight caused by Xanthomonas oryzae pv. oryzae in rice. Herein, we provide the complete genome sequence and a possible explanation of the antibiotic function of the P-10 strain.


July 7, 2019  |  

Nitrogen fixation genes and nitrogenase activity of the non-heterocystous cyanobacterium Thermoleptolyngbya sp. O-77.

Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 µmol m-2 s-1 suppressed the effects of illumination.


July 7, 2019  |  

The draft genome sequence of Pectobacterium carotovorum subsp. actinidiae KKH3 that infects kiwi plant and potential bioconversion applications

Pectobacterium carotovorum subsp. actinidiae KKH3 is an Enterobacteriaceae bacterial pathogen that infects kiwi plants, causing canker-like symptoms that pose a threat to the kiwifruit industry. Because the strain was originally isolated from woody plants and possesses numerous plant cell wall-degrading enzymes, this draft genome report provides insight into possible bioconversion applications, as well as a better understanding of this important plant pathogen.


July 7, 2019  |  

Unlocking the biological potential of Euglena gracilis: evolution, cell biology and significance to parasitism

Photosynthetic euglenids are major components of aquatic ecosystems and relatives of trypanosomes. Euglena gracilis has considerable biotechnological potential and great adaptability, but exploitation remains hampered by the absence of a comprehensive gene catalogue. We address this by genome, RNA and protein sequencing: the E. gracilis genome is >2Gb, with 36,526 predicted proteins. Large lineage-specific paralog families are present, with evidence for flexibility in environmental monitoring, divergent mechanisms for metabolic control, and novel solutions for adaptation to extreme environments. Contributions from photosynthetic eukaryotes to the nuclear genome, consistent with the shopping bag model are found, together with transitions between kinetoplastid and canonical systems. Control of protein expression is almost exclusively post-transcriptional. These data are a major advance in understanding the nuclear genomes of euglenids and provide a platform for investigating the contributions of E. gracilis and its relatives to the biosphere.


July 7, 2019  |  

The complete mitochondrial genome of Wonwhang (Pyrus pyrifolia)

This is a de novo assembly and annotation of a complete mitochondrial genome from Pyrus pyrifolia in the family Rosaceae. The complete mitochondrial genome of P. pyrifolia was assembled from PacBio RSII P6-C4 sequencing reads. The circular genome was 458,873?bp in length, containing 39 protein-coding genes, 23 tRNA genes and three rRNA genes. The nucleotide composition was A (27.5%), T (27.3%), G (22.6%) and C (22.6%) with GC content of 45.2%. Most of protein-coding genes use the canonical start codon ATG, whereas nad1, cox1, matR and rps4 use ACG, mttB uses ATT, rpl16 and rps19 uses GTG. The stop codon is also common in all mitochondrial genes. The phylogenetic analysis showed that P. pyrifolia was clustered with the Malus of Rosaceae family. Maximum-likelihood analysis suggests a clear relationship of Rosids and Asterids, which support the traditional classification.


July 7, 2019  |  

Complete genome sequence of Spirosoma pulveris JSH 5-14 T, a bacterium isolated from a dust sample

Dust particles from the deserts and semiarid lands in northern China cause pollution that increase the burden of allergic disease particularly in the urban population of East Asia. Dust particles that carried with windstorm are associated with microbial populations, which include virus, bacteria, and fungi. Spirosoma pulveris JSH 5-14T isolated from the gamma ray-irradiated dust sample collected at Nonsan, Chungnam province, South Korea and showed resistance against gamma and UV radiation. We carried out the whole genome sequencing to understand insight of radiation resistance and their mechanisms of survival. The whole genome of strain JSH 5-14T is comprised of 7,188,680 bp (G+C content of 50.50%) including 5,896 protein-coding genes and 52 RNA genes. The genome analysis of strain JSH 5-14T showed the presence of several genes involved in DNA repair pathways and defense mechanism against irradiation. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.


July 7, 2019  |  

Genome sequence-based marker development and genotyping in potato

Potato (Solanum tuberosum L.) is one of the world’s most economically important food crops and holds major significance for future food security. Despite its importance, the study of potato genetics and breeding has lagged behind mainly due to its polyploid genome and high levels of heterozygosity. Conventional marker and genotyping approaches have been helpful in progressing potato genetic research but have also had limitations in exploiting the outcome from these studies for gene discovery and applied research applications. The sequencing of the potato genome, followed by advancements in marker and genotyping technologies, has brought a step change in the way potato genetic studies are conducted. Potato is now amenable to modern sequence-based marker and genotyping methods with their increased ability to put thousands of markers on any population of interest without a priori knowledge. This has increased the precision and resolution of genetic studies previously not feasible in potato. A diverse range of fixed and flexible genotyping platforms, for a wide variety of research and breeding applications, are now available. Concerted research efforts are now needed to screen the available genetic diversity for this important crop to identify novel and beneficial trait alleles in order to enable efficient and precise introgression breeding permitting breeding of climate smart, and resilient, potato cultivars. This chapter provides an overview of sequence-based marker development and genotyping methods along with their implications for potato research and breeding in the post-genomics era.


July 7, 2019  |  

Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum).

The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94?% average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006T, NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006T (=DSM 105255T=NCPPB 4611T).


July 7, 2019  |  

Complete genome sequence of Lactobacillus plantarum JBE245 isolated from Meju

Lactobacillus plantarum is widely found in fermented foods and has various phenotypic and genetic characteristics to adapt to the environment. Here we report the complete annotated genome sequence of the L. plantarum strain JBE245 (= KCCM43243) isolated for malolactic fermentation of apple juice. The genome comprises a single circular 3,262,611 bp chromosome with 2907 coding regions, 45 pseudogenes, and 91 RNA genes. The genome contains 4 malate dehydrogenase genes, 3 malate permease genes and various types of plantaricin-synthesizing genes. These genetic traits meet the selection criteria of the strains that should prevent the spoilage of apple juice during fermentation and efficiently convert malate to lactic acid.


July 7, 2019  |  

Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes.

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted “noncoding RNAs” to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.© 2017 Prasad et al.; Published by Cold Spring Harbor Laboratory Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.