Comparative Studies of Mammalian Sex Chromosomes: From Cytogenetics to NGS
It is a common knowledge that sex chromosome mutations are better tolerated and more viable compared to changes in autosomes. This is explained by relatively low gene density in both the X and the Y chromosome and by random X chromosome inactivation in mammalian females buffering the effect of X-aneuploidies. However, it is not well understood why apparently similar sex chromosome abnormalities, such as X-monosomy or certain Y chromosome rearrangements, result in different phenotypic effects in different species. It is thought that this is due to species differences in the organization of the Y chromosome, differences in the set of genes escaping X-inactivation, and the presence of species/lineage specific sex-linked genes with functions in development and reproduction. Current knowledge about the species differences in sex chromosome organization and function is limited, this despite the availability of reference genome assemblies for most domestic species. It appears that sequence assembly of the X chromosome in most species is rather patchy containing multiple gaps and possible misassemblies, being the poorest in the pseudoautosomal region and in regions containing putative lineage-specific sequences. The Y chromosome, on the other hand, is typically not included in the reference genome and is studied separately, whereas complete sequence assembly of the male-specific portion of the Y is not yet available for any domestic species. In this talk I will discuss comparative organization and function of animal sex chromosomes and related phenotypes proceeding from our research in horses.