Menu
May 24, 2017  |  General

Genome Assembly Advances Featured in Genome Research Special Issue

The May issue of Genome Research is a special edition focusing on advances in sequencing technologies and genome assembly techniques. The research papers selected for this special issue cover reference-grade genome assemblies, structural variant detection, diploid assemblies, and other features enabled by new high-quality sequencing tools.
The issue kicks off with a perspective from NHGRI’s Adam Phillippy, who reflects on the history of sequencing and assembly. Dusting off publications from as early as 1979, he illustrates the remarkable pace of advances in this field for the past four decades. Phillippy has worked with just about every kind of sequence data, so his view of the current landscape is particularly instructive. “The biggest gains in contig lengths have come from single-molecule sequencing,” he writes. “Critically, 10-kb reads are longer than the most common repeats in both microbial and vertebrate genomes and can therefore generate highly continuous assemblies. In fact, the complete reconstruction of bacterial genomes—a process that used to require teams of people—is now automated and routine.” Phillippy also notes that long-read sequencing assemblies have spurred “a renewed interest in repetitive sequences, which can be properly analyzed for the first time” and are “even revealing new variation in the human genome.”
We are very pleased that more than half of the papers in this special issue feature our sequencing data and genome assemblies derived therefrom, underscoring PacBio’s leading role in long-read sequencing and de novo assembly. We congratulate all the authors for their exciting contributions to this special issue and encourage you to review these excellent publications:
Human Genome

Plant and Animal Genomes

New Tools for Long-Read Data

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.