Please join us in congratulating Kristen Sund from Cincinnati Children’s Hospital Medical Center for winning our 2018 Structural Variation SMRT Grant Program!
Her proposal to use SMRT Sequencing to pinpoint the genetic mechanism responsible for neurological disease in patients with complex structural rearrangements definitely captured our attention. We caught up with Kristen to learn more about her background, her research, and how she hopes to use the data generated through this grant.
How did you get into this field?
I have always had a very strong interest in research and patient care, so I decided to get training as a genetic counselor and to get my PhD in molecular and developmental biology. I guess it makes sense from there that I am constantly looking for ways to use the latest technologies to find the genetic cause for disorders that were previously undiagnosable.
What does your day-to-day work look like?
Right now, I’m a laboratory fellow in a combined program for cytogenetics and molecular genetics at the ABMGG Laboratory for Genetics and Genomics. My activities focus on learning everything from the wet lab to analysis to quality control to interpretation for clinical genetic testing. What I really love about the combined approach to molecular genetics and cytogenetics is that it allows us to fully integrate what we’re doing for a particular case and focus on finding an answer. It feels more holistic.
What’s the background behind your SMRT Grant proposal?
When I was a genetic counselor in the lab, I was involved with research projects that focused on using the latest genetic technologies. At the time we were not offering clinical whole exome sequencing and there was a strong interest in using the technology on a research basis for some families that hadn’t been diagnosed. I wound up developing an analysis algorithm which I’m sure is very primitive by today’s standards, but at the time it got the job done. We actually solved a number of those cases. I loved that work — getting to know the families and being able to find them an answer in some cases. In my lab now, we do offer whole exome sequencing, but I began wondering what else we could do with other technologies that wasn’t possible with exome sequencing. How could we use long-read sequencing to search for answers for cases that are undetectable with other technologies?
What is it about these cases that makes them challenging to solve with other approaches?
Here’s one example of a case that we’re planning to submit for long-read sequencing. This patient has a neurologic phenotype and a known chromosome abnormality that is a little bit unusual because it involves two chromosomes and four chromosome breaks from an insertion and a translocation. The patient has had extensive follow-up testing including a SNP microarray and a couple of NGS panels, all of which came back normal. I’m convinced that one of these breakpoints holds the answer. I’ve been able to estimate the location of the breakpoint and some genes that might be in the region, but all we can do is guess until we can get a higher resolution look at the breakpoints and hopefully find a gene of interest.
What does it mean to long-undiagnosed patients to finally get an answer?
Families use the information in different ways. One family that comes to mind started a support group through Facebook. This child was a teenager, so this family had been dealing with this her whole life, but they didn’t know what to expect for her prognosis or how to explain it to other people. For them, it was huge to get an answer. There are no real treatment options, but it meant so much to the family to find out what to expect.
We’re excited to support this research and look forward to seeing the results. Check out our website for more information on upcoming SMRT Grant Programs for a chance to win free sequencing. Thank you to our co-sponsor, the University of Minnesota Genomics Center, for supporting the 2018 Structural Variation SMRT Grant Program!
For Research Use Only. Not for use in diagnostic procedures.
February 20, 2019 | Neurogenomics