Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb) and rice (350 Mb). Plant genomes, especially grasses, have complex repeat structures such as telomeres, centromeres, and ribosomal gene cassettes, and high heterozygosity, which makes them difficult to assembly using short read next generation sequencing technologies. Ultra-long PacBio reads using the new P6C4 chemistry and the latest 15kb Blue Pippin size-selection protocol to generate 20kb insert libraries that yielded an average read length of 12kb providing ~72X coverage, and 10X coverage with reads over 20kb. The HGAP assembly covers 98% of the genome with a contig N50 of 2.4 Mb, which makes it one of the highest quality and most complete plant genomes assembled to date. Oro has a compact genome structure compared to other grasses with only 16% repeat sequences but has very good collinearity with other grasses. Understanding the genomic mechanisms of extreme desiccation tolerance in resurrection plants like Oro will provide insights for engineering and intelligent breeding of improved food, fuel, and fiber crops.
Organization: Donald Danforth Plant Science Center
Year: 2015