Menu
July 7, 2019

Genomic analysis reveals novel diversity among the 1976 Philadelphia Legionnaires’ disease outbreak isolates and additional ST36 strains.

Authors: Mercante, Jeffrey W and Morrison, Shatavia S and Desai, Heta P and Raphael, Brian H and Winchell, Jonas M

Legionella pneumophila was first recognized as a cause of severe and potentially fatal pneumonia during a large-scale outbreak of Legionnaires' disease (LD) at a Pennsylvania veterans' convention in Philadelphia, 1976. The ensuing investigation and recovery of four clinical isolates launched the fields of Legionella epidemiology and scientific research. Only one of the original isolates, "Philadelphia-1", has been widely distributed or extensively studied. Here we describe the whole-genome sequencing (WGS), complete assembly, and comparative analysis of all Philadelphia LD strains recovered from that investigation, along with L. pneumophila isolates sharing the Philadelphia sequence type (ST36). Analyses revealed that the 1976 outbreak was due to multiple serogroup 1 strains within the same genetic lineage, differentiated by an actively mobilized, self-replicating episome that is shared with L. pneumophila str. Paris, and two large, horizontally-transferred genomic loci, among other polymorphisms. We also found a completely unassociated ST36 strain that displayed remarkable genetic similarity to the historical Philadelphia isolates. This similar strain implies the presence of a potential clonal population, and suggests important implications may exist for considering epidemiological context when interpreting phylogenetic relationships among outbreak-associated isolates. Additional extensive archival research identified the Philadelphia isolate associated with a non-Legionnaire case of "Broad Street pneumonia", and provided new historical and genetic insights into the 1976 epidemic. This retrospective analysis has underscored the utility of fully-assembled WGS data for Legionella outbreak investigations, highlighting the increased resolution that comes from long-read sequencing and a sequence type-matched genomic data set.

Journal: PloS one
DOI: 10.1371/journal.pone.0164074
Year: 2016

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.