

SMRT[®] Link Kinnex[™] single-cell troubleshooting guide (v13.1) Research use only. Not for use in diagnostic procedures.

P/N 103-516-100 Version 01 (Aug 2024)

© 2024, PacBio. All rights reserved.

Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document.

Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at https://pacb.com/license.

Trademarks:

Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omnione, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio, Onso, Apton, Kinnex, and PureTarget are trademarks of Pacific Biosciences of California Inc. (PacBio).

See https://github.com/broadinstitute/cromwell/blob/develop/LICENSE.txt for Cromwell redistribution information.

PacBio 1305 O'Brien Drive Menlo Park, CA 94025 www.pacb.com

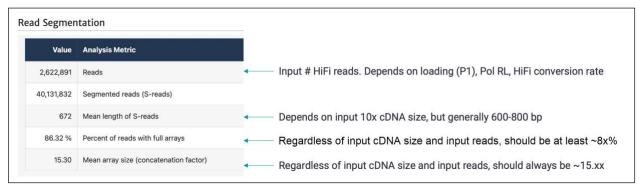
SMRT® Link Kinnex single-cell troubleshooting guide (v13.1)

Introduction

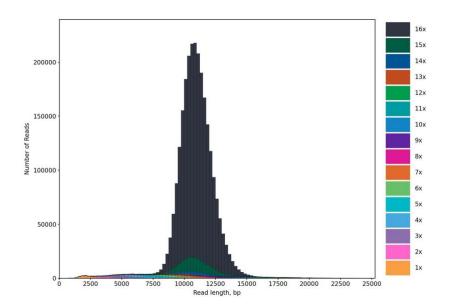
This document describes the metrics generated by the **Read Segmentation** and **Single-Cell Iso-Seq**® workflow in SMRT Link v13.1.
The document also describes possible issues that can occur when using the **Kinnex single-cell RNA** kit for both supported and unsupported use cases.

Kit compatibility: The workflows described in this document are for single-cell Iso-Seq data generated using Kinnex single-cell RNA kit. However, it can also be used to analyze data generated using the MAS-Seq for 10x Single Cell 3' kit (no longer available for purchase). To learn more about the general Kinnex technology, visit https://pacb.com/kinnex.

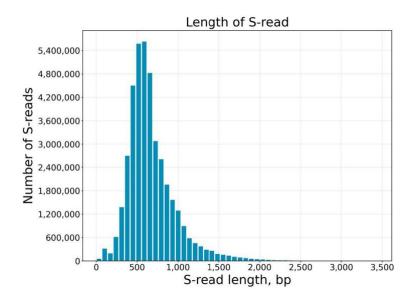
- Example data sets are available <u>here.</u>
- Additional command-line information, example commands, and suggestions for tertiary analyses are described here.


SMRT Link Read Segmentation

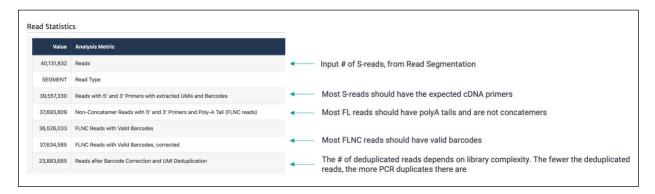
The SMRT Link Read Segmentation workflow can be invoked either as a standalone Data Utility workflow, or in combination with Single-Cell Iso-Seq as an Analysis workflow. For Kinnex single cell users using the **Kinnex single-cell RNA** kit, **Read Segmentation and Single-Cell Iso-Seq** is the recommended workflow.


Read Segmentation deconcatenates HiFi reads into segmented reads (Sreads) based on segmentation adapters, using the command-line skera tool. (See here for details.)

The Kinnex single-cell RNA kit enriches for full (16-fold) arrays, while most 10x cDNA libraries are 600-1000 bp. Therefore, the percentage of full array and concatenation factors should have typical values as shown below.


Metric	Explanation	Typical value
Reads	Number of HiFi reads	Depends on sequencing yield
S-reads	Number of segmented reads	Depends on HiFi read yield and concatenation success
Mean Length of S-reads	Mean read length of S-reads	600-800bp for 10x cDNA
Percent of Reads with Full Arrays	Percent of HiFi reads with full Kinnex arrays	85-90%
Mean Array Size	Concatenation factor	~15.xx

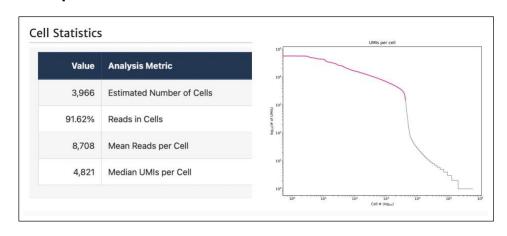
A clean peak between 10,000 – 14,000 bp indicates good Kinnex array formation and successful enrichment of full arrays:


S-read read length should largely reflect the original 10x cDNA library size:

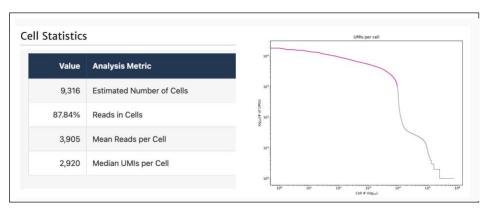
SMRT Link Single-Cell Iso-Seq workflow: Read statistics

cDNA primers and polyA tails are removed from S-reads, then UMI/BC are extracted and reads are deduplicated. This is performed using the command <code>isoseq3 tag/refine/correct/groupdedup</code>. (See here for the high-level workflow.)

Metric	Explanation	Typical value
Reads	Number of S-reads	Depends on sequencing yield
Read Type	CCS or SEGMENT	CCS or SEGMENT
Reads with 5' and 3' Primers with Extracted UMIs and Barcodes	Full-Length (FL) tagged reads	>95% of reads should be FL tagged
Non-Concatemer Reads with 5' and 3' Primers and PolyA Tail	Full-Length Non-Concatemer (FLNC) tagged reads	>90% of reads should be FLNC tagged
FLNC Reads with Valid Barcodes	FLNC reads matching a barcode white list	>90% of reads should match barcodes in the white list
FLNC Reads with Valid Barcodes, Corrected	FLNC reads matching the barcode white list after correction	>90% of reads should match barcodes in the white list after correction
Reads After Barcode Correction and UMI Deduplication	Deduplicated reads	Deduplicated read yield depends on the 10x library complexity and PCR duplication rate


SMRT Link Single-Cell Iso-Seq workflow: Cell statistics

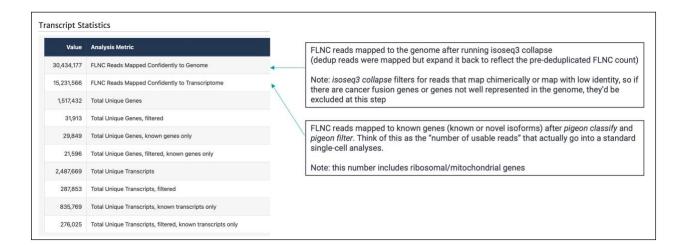
The number of estimated cells ("real cells") varies by experiment. The estimation is performed using the isoseq3 bcstats command. (See here for information.)


Metric	Explanation	Typical value
Estimated Number of Cells	The number of real cells	Depends on the 10x library
Reads in Cells	The percent of reads in real cells	>85%
Mean Reads per Cell	The mean reads per real cell	Depends on the 10x library and read yield
Median UMIs per Cell	The median UMI per real cell	Depends on the 10x library, read yield, and PCR duplication rate

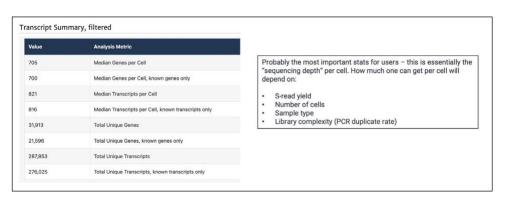
The estimated number of cells, mean reads per cell and median UMIs per cell are highly dependent on the single-cell library and sample complexity. If you suspect that the cell estimation is incorrect using the default knee method for isoseq3 correct, the cells can be reestimated using the alternative percentile method. (See here for details.)

Example 1: PBMC 5k cells - Cell statistics

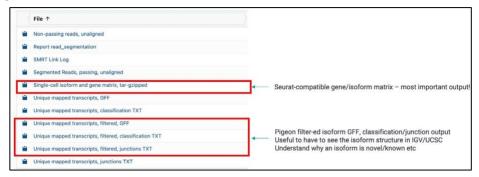
Example 2: PBMC 10k cells - Cell statistics


SMRT Link Single-Cell Iso-Seq workflow: Transcript statistics

Deduplicated reads are mapped to a genome, classified and filtered using pigeon software (SQANTI3). This is performed using the command pbmm2/isoseq3 collapse/pigeon. (See here for information.)

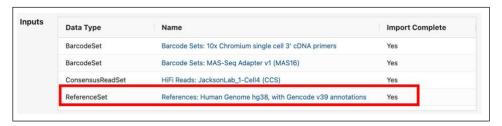

Metric	Explanation	Typical value
FLNC Reads Mapped Confidently to Genome	FLNC reads (before deduplication) mapped to the genome.a	~80%
FLNC Reads Mapped Confidently to Transcriptome	FLNC reads (before deduplication) mapped to transcriptomeb	30-50%
Total Unique Genes	Total unique genes before pigeon filteringe	Sample-dependent
Total Unique Genes, filtered	Total unique genes after pigeon filteringc	Sample-dependent
Total Unique Genes, known genes only	Total unique known genes before pigeon filteringc	Sample-dependent
Total Unique Genes, filtered, known genes only	Total unique known genes after pigeon filteringc	Sample-dependent
Total Unique Transcripts	Total unique transcripts before pigeon filtering	Sample-dependent
Total Unique Transcripts, filtered	Total unique transcripts after pigeon filtering	Sample-dependent
Total Unique Transcripts, known transcripts only	Total unique known transcripts before pigeon filtering	Sample-dependent
Total Unique Transcripts, filtered, known transcripts only	Total unique known transcripts after pigeon filtering	Sample-dependent

a. FLNC reads mapped to the genome after running <code>isoseq3 collapse</code>. Though actual mapping is done with deduplicated reads, UMI count is summarized post-mapping to reflect the prededuplicated FLNC count. Note that <code>isoseq3 collapse</code> filters for reads that map chimerically or map with low identity, so if there are cancer fusion genes or genes not well represented in the genome, they would be **excluded** at this step. In general, one should expect most (~80%) FLNC reads to map to the genome, even if they end up mapping to, say, intergenic regions.


- b. FLNC reads mapped to known genes (known or novel isoforms) after <code>pigeon classify</code> and <code>pigeon filter</code>. This number more likely represents the "number of usable reads" that actually go into a standard single-cell analysis. This number includes ribosomal/mitochondrial genes. It is typical to see 30-50% FLNC reads map to the transcriptome, which is consistent with equivalent 10x short read sequencing data. Most of the non-transcriptomic but genomically-mapped reads are attributed to intergenic regions and are filtered out by <code>pigeon filter</code>.
- c. It is typical to see a very high number of "total number of genes/transcripts" before pigeon filter. This is due to the high number of loci that are intergenic and still being assigned a "novel gene" status before pigeon filter.

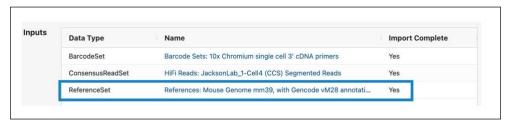
After pigeon filtering, the number of genes/isoforms per cell:

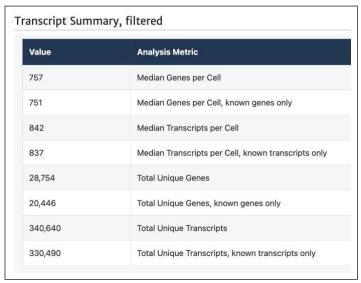
SMRT Link Read Segmentation and Single-Cell Iso-Seq Workflow: File downloads



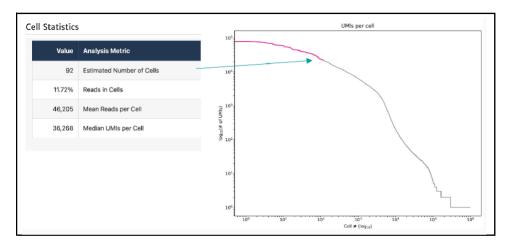
Possible issues when using the Kinnex single-cell RNA kit for supported use cases

The currently-supported use case for the Kinnex single-cell kit is a single-cell library produced using the 10x Single Cell kits (5' or 3'), with a 3000-10,000 cell targeted recovery.

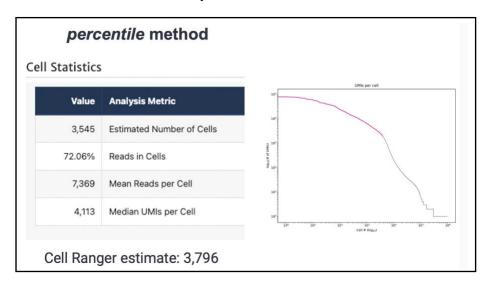

Observed issue	Likely cause	Solution
Good concatenation factorLow S-read yield	Low P1 loading or HiFi conversion	Perform additional sequencing
Good S-read yieldPoor FLNC yield and beyond	Using a different version of the 10x 3' or 5' kit (SL supports barcode whitelist for 3' v3.1 and 5' v2)	Reanalyze with proper cDNA primer, UMI/BC design and barcode white list. Additional 10x cDNA primers and barcode white list can be found here.
 Good S-read yield Good cell statistics Poor read mapping and low gene counts 	The wrong reference was selected.	Choose correct reference genome and annotation. SMRT Link supports only human and mouse reference genome + Gencode annotation (available here). If using different genomes or annotations, refer to the pigeon documentation for command line analysis. (See here for details.)
Good S-read yieldPoor cell recovery	The algorithm underestimated the number of cells.	Reanalyze using the percentile method in SMRT Link or using the command line. (See here for details.)
Analysis experienced an error, but was able to recover and complete successfully; High Barcode Errors	Incorrect barcode white list	Reanalyze using the correct barcode white list. The error message Analysis experienced an error, but was able to recover and complete successfully; High Barcode Errors indicates that the barcode white list provided is incorrect. Note that SMRT Link expects a barcode white list that is reverse-complemented, which is not how the 10x white list is typically provided. A list of common barcode white list in reverse-complement can be found here.

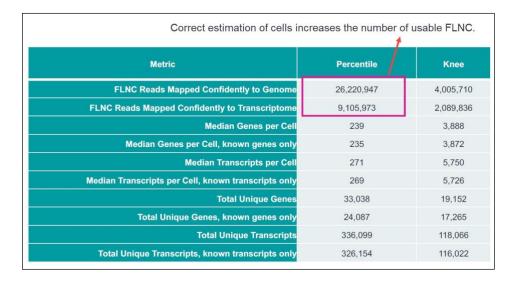

Troubleshooting Example 1: Wrong reference selected, poor gene/ transcript recovery

Correct reference selected, good gene/transcript recovery

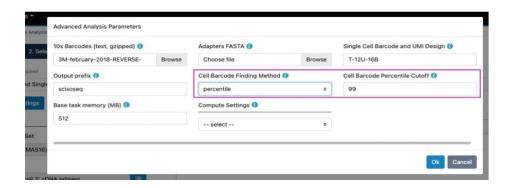

Troubleshooting Example 2: Underestimating the number of cells

If you generated matching short read data or have an expected target cell recovery, you might identify cases in which the cell barcode calling algorithm **underestimated** the number of cells. This affects:


- · Cell statistics
- · Transcript statistics
- · Output count matrix


It does not affect:

- Segmentation statistics
- · Read statistics



In most cases, the <code>knee</code> method is successful in estimating the number of real cells. Following are examples where the <code>knee</code> method was **not** successful, and the <code>percentile</code> method (with 97% or 99% cutoff) was used to achieve cell recovery.

SMRT Link supports the optional **percentile** method:

Possible issues when using the Kinnex single-cell RNA kit for unsupported use cases

The following are **unsupported use cases** for the Kinnex single-cell RNA kit that are commonly observed. Note that PacBio **cannot** offer official support for library preparations, sequencing, or analyses for use of the kit in unsupported scenarios including those described below. The unsupported

use cases described herein have not been validated by PacBio® and are provided as-is and without any warranty. Use of these unsupported use cases is offered to those customers who understand and accept the associated terms and conditions and wish to take advantage of their potential for use of their samples for analysis using the PacBio system. If any of part of these unsupported use cases is to be used in a production environment, it is the responsibility of the end user to perform the required validation.

Observed issue	Likely cause	Solution
 Good S-read and FLNC yield Poor FLNC with barcodes and beyond. 	Using the Kinnex single-cell kit with a Visium (spatial) library	Rerun the analysis using (1) cell barcode list; (2) barcode and UMI design.

Using SMRT Link v13.1 with a Visium sample

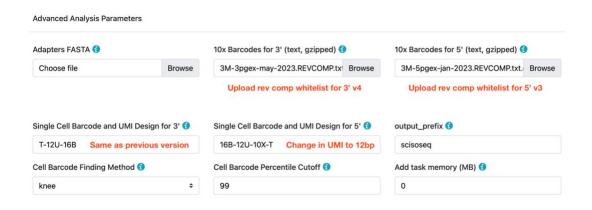
Visium samples have the exact same molecular structure as standard 10x 3' kit; the main inputs are identical to 3' analysis.

In the Read Segmentation and Single-Cell Iso-Seq's **Advanced Parameters** dialog, change **10x barcodes** to **Visium** barcodes (~5000 spots). Note that "cells" are basically spots if using SMRT Link to analyze Visium data.

Example unsupported use case: Kinnex single-cell RNA kit with 10x Visium (spatial) library

The Kinnex single-cell RNA kit can work directly with Visium libraries **without** modification. Only the SMRT Link parameters require changing

Incorrect parameters for Kinnex Visium unsupported use case



When the barcode white list is incorrect, SMRT Link displays a warning in the barcode correction step.

Using SMRT Link v13.1 with GEM-X libraries

The 10x GEM-X libraries are untested but are expected to be compatible with the Kinnex single-cell RNA kit, as the adapter sequences are the same as prior versions. However, because the UMI and barcodes have changed, minor changes are required in running SMRT Link.

Download the reverse-complemented 10x GEM-X barcodes from here. In SMRT Link, change the parameters to upload the appropriate barcode whitelist and change the UMI/BC design to the following:

