PacBi

Technical overview Revio system v13.3 + SPRQ chemistry

Instrument control software, SMRT Link software & applications updates for the Revio system with SPRQ chemistry

PN 103-585-900 Rev 01 | December 2024

Technical overview

Revio system v13.3 + SPRQ chemistry Instrument control software, SMRT Link software & applications updates for the Revio system with SPRQ chemistry

- Revio system v13.3 key features & benefits overview
- 2. Revio system v13.3 SPRQ consumables & ICS
- 3. Revio system v13.3 user experience improvements
- 4. Revio system v13.3 applications & protocol updates

- 5. Revio system v13.3 example sequencing performance
- 6. Technical documentation & applications support resources
- 7. Appendix

PacBi

Revio system v13.3 key features & benefits

What is staying the same in Revio system v13.3?

No major changes to core HiFi library prep kits and Revio hardware / Revio SMRT Cells / Revio data file formats

HiFi library prep kits

SMRTbell prep kit 3.0 / HiFi prep kit 96¹ / HiFi plex prep kit 96 / Kinnex / PureTarget

Revio instrument hardware

Four independent stages with multiple movie time options

Revio SMRT Cell

High-density ZMW SMRT Cell

What is new in Revio system v13.3?

New Revio system v13.3 with SPRQ chemistry makes HiFi sequencing easier and more cost-effective

More data

480 Gb HiFi data per run (4 Revio SMRT Cells) or 120 Gb per Revio SMRT Cell

More sample types

4-fold reduction in DNA input requirements enables analysis of more precious sample types

More accuracy

Improved 5mC calling performance in CpG contexts enables accurate methylation profiles

More robust

Chemistry improvements enable more consistent sequencing performance for small inserts (≥1 kb)

More streamlined

New automated on-instrument 6mA calling, SMRT Link user experience improvements and support for SMRT Link Cloud¹

PacBi

Revio system v13.3 key workflow updates

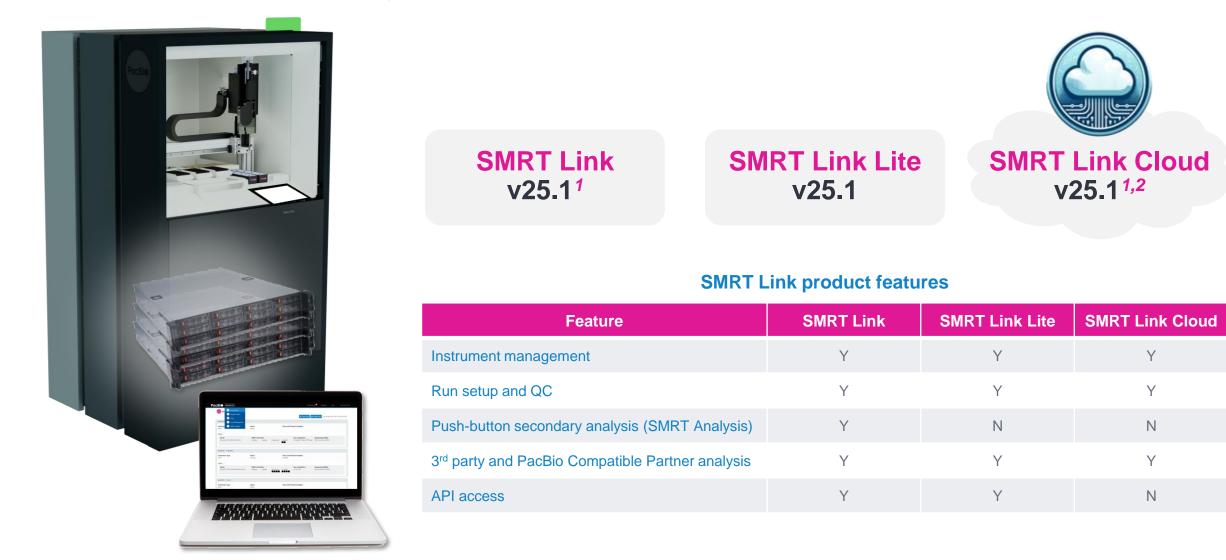
Revio workflow step	What's new	What stays the same
DNA sample extraction	New saliva HMW DNA extraction procedure using Genotek Oragene collection devices and Nanobind kits	 Existing Nanobind HMW DNA extraction workflows Existing Nanobind kits
SMRTbell library preparation	 Reduced genomic DNA input requirements for HiFi WGS library preparation + re-optimized SRE & shearing conditions to support low DNA input amounts (500 ng) 	 Core SMRTbell library construction workflow Existing HiFi library preparation kits Existing applications support
Sample setup (ABC)	 Updated sample setup ABC (annealing / binding / complex cleanup) workflow guidance for new Revio SPRQ polymerase kit SMRT Link v25.1 Sample Setup Loading Calculator support for new Revio SPRQ polymerase kit SMRT Link 25.1 Sample Setup GUI user experience improvements 	Overall Revio sample setup workflowExisting applications support
Run design	 SMRT Link v25.1 run design support for new Revio SPRQ sequencing plate SMRT Link v25.1 run design GUI user experience improvements 	Overall Revio run design workflowExisting applications support
Sequencing	 ICS v13.3 support for new Revio SPRQ chemistry ICS v13.3 support for reduced DNA input requirements ICS v13.3 support for improved 5mc CpG calling and on-instrument 6mA calling for Fiber-Seq assays 	 Overall Revio run setup workflow Existing Revio SMRT Cell Existing Revio on-instrument analysis features

PacBi

Revio system v13.3 key software updates

New ICS and SMRT Link software enables support for Revio SPRQ chemistry

Revio system supported software						
	ICS v13.3 ¹	SM	RT Link v25.1 ²			
Instrument control	 Minor ICS software bug fixes Improved sequencing workflow to support reduced DNA input amounts 		General user interface improvements			
Primary and post-primary analysis	 Added support for new Revio SPRQ sequencing chemistry³ 	Sample Setup	 Loading calculator support for new Revio SPRQ polymerase kit³ 			
On-instrument CCS analysis	 Added support for new SPRQ sequencing chemistry³ 	Runs	 Run design support for new Revio SPRQ sequencing plate³ General user interface improvements 			
On-instrument methylation calling	 Improved accuracy and increased confidence of 5mCpG calling On-instrument 6mA caller for Fiber-seq chromatin assay 	Data Management	No major changes			
On-instrument barcode demux	No major changes	SMRT Analysis	 General usability and user experience improvements 			


¹ ICS v13.3 is only available for Revio systems and does not support Sequel II/IIe systems.

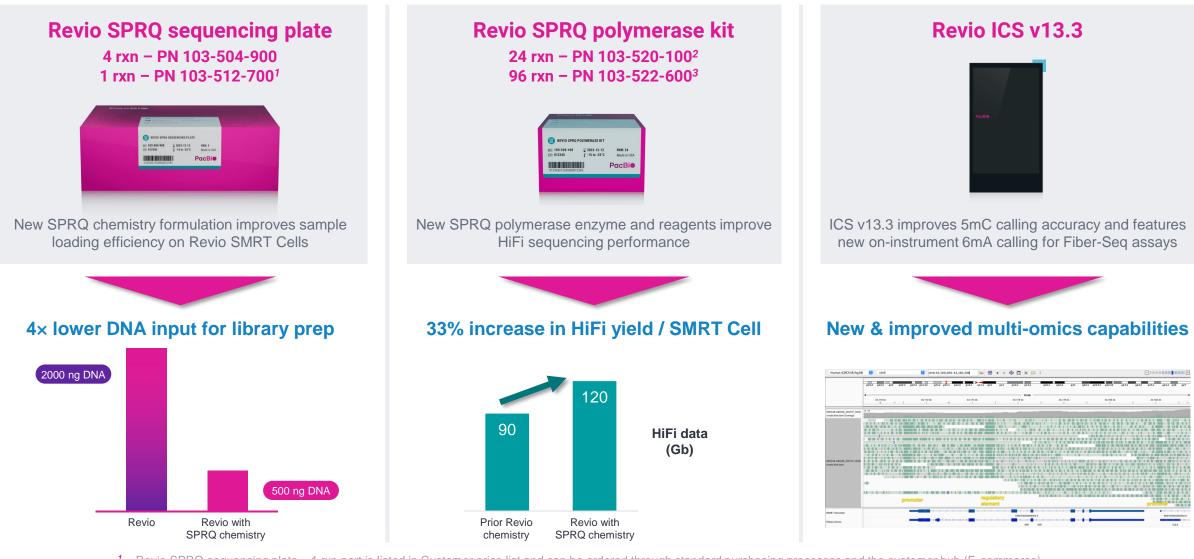
SMRT Link v25.1 supports Revio system ICS v13.3 and Vega system ICS v1.0. SMRT Link v25.1 does not support Sequel II/IIe systems

PacBi ³ ICS v13.3 also retains support for original Revio sequencing chemistry.

Revio system v13.3 key software updates (cont.)

Revio v13.3 with SPRQ chemistry SMRT Link compatible versions

¹ SMRT Link v25.1 and SMRT Link Cloud do not support Sequel II/IIe systems.



PacBi

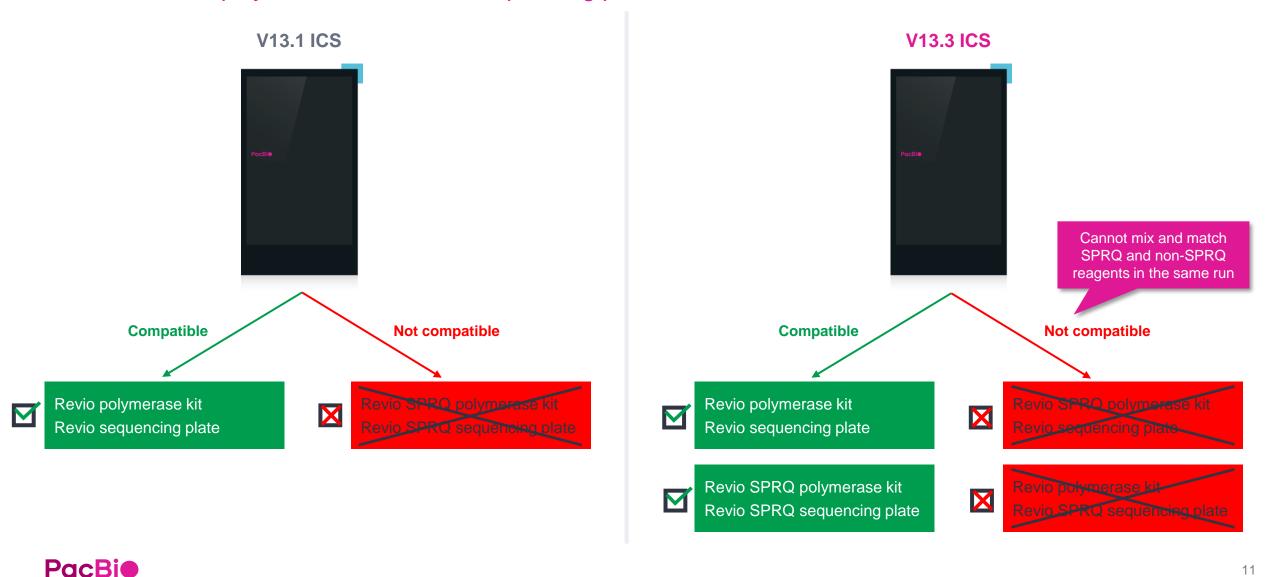
Revio system v13.3 SPRQ consumables & instrument control software

Revio system v13.3 release includes new polymerase kit, sequencing plate & ICS

New consumables and instrument control software enable an improved user experience for HiFi sequencing

1 Revio SPRQ sequencing plate – 1 rxn part is listed in Customer price list and can be ordered through standard purchasing processes and the customer hub (E-commerce).

² Revio SPRQ polymerase kit + cleanup beads bundle PN 103-520-100 includes Revio SPRQ polymerase kit and SMRTbell cleanup beads.


PacBi

³ Revio SPRQ HiFi prep kit 96 bundle PN 103-522-600 includes Revio SPRQ polymerase kit 96, HiFi prep kit 96, SMRTbell cleanup beads and other reagents to support high-throughput sample processing.

10

Revio system v13.3 consumable compatibility

Revio SPRQ polymerase kit & Revio SPRQ sequencing plate must be used together and cannot be combined with older Revio polymerase kit & Revio sequencing plate consumables

11

New Revio SPRQ polymerase kit (cont.)

Revio polymerase kit configuration and layout comparison

Revio SPRQ polymerase kit

(Supports up to 24 binding Rxs / 24 Revio SMRT Cells)

4

PacBi

5

6

REVIO SPRQ POLYMERASE KIT

2023-12-12

1 -15 to -25°C

RXN: 24

PacBie

Made in USA

ME 103-520-100

COT 012345

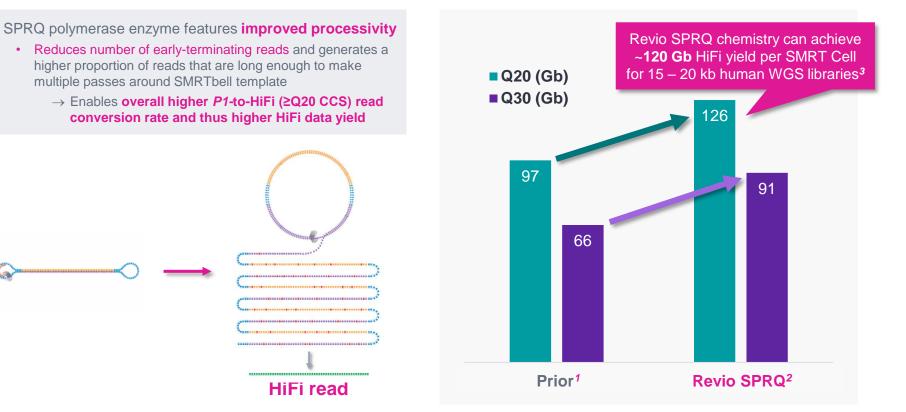
Revio polymerase kit

(Supports up to 24 binding Rxs / 24 Revio SMRT Cells)

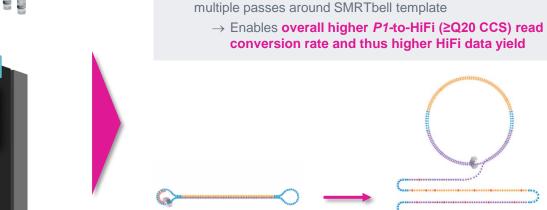
#	Component	Part number	Qty	Color	Volume		#	Component	Part number	Qty	Color	Volume
1	Annealing buffer	102-797-600	1	light blue	530 µL		1	Annealing buffer	102-797-600	1	light blue	530 µL
2	Standard sequencing primer	102-797-700	1	light green	530 µL	Note: Revio SPRQ polymerase kit contains new reagents with new part numbers – but existing	2	Standard sequencing primer	102-797-700	1	light green	530 µL
3	Kinnex™ sequencing primer	103-179-000	1	light purple	530 µL	tube labels (tube names) stay the same	3	Kinnex™ sequencing primer	103-179-000	1	light purple	530 µL
4-5	Polymerase buffer	102-797-800	2	yellow	1.2 mL		4-5	Polymerase buffer	102-797-800	2	yellow	1.2 mL
6	Sequencing polymerase	103-512-800	1	purple	102 µL	NEW SPRQ enzyme and part number	6	Sequencing polymerase	102-797-300	1	purple	102 µL
7-9	Dilution buffer	102-797-900	3	blue	1.7 mL		7-9	Dilution buffer	102-797-900	3	blue	1.7 mL
10	Sequencing control	103-508-800	1	red	27 µL	NEW DNA control complex and part number	10	Sequencing control	102-798-000	1	red	27 µL
11	Loading buffer	103-485-400	1	green	1.46 mL	NEW loading buffer and part number	11-12	Loading buffer	102-797-500	2	green	1.2 mL
	1 2 3 11 tubes 12 tubes											

12

New Revio SPRQ chemistry improves HiFi data yield


New SPRQ polymerase enzyme enables more efficient generation of HiFi data compared to previous chemistry

Revio SPRQ chemistry enables HiFi sequencing to generate ~33% higher HiFi data yields compared to prior chemistry¹


Revio SPRQ polymerase kit

PacBi

QV and HiFi data yield

Revio system v13.3

PacBi

Example HiFi data shown for a human HG002 sample run using Revio polymerase kit and Revio sequencing plate chemistry.

Example HiFi data shown for a human HG002 sample run using Revio SPRQ polymerase kit with Revio SPRQ sequencing plate chemistry.

HiFi yield is dependent on library quality, library insert size and sequencing preparation procedures. Specified yield is based on high-quality samples prepared following best practices.

New Revio SPRQ DNA sequencing control performance

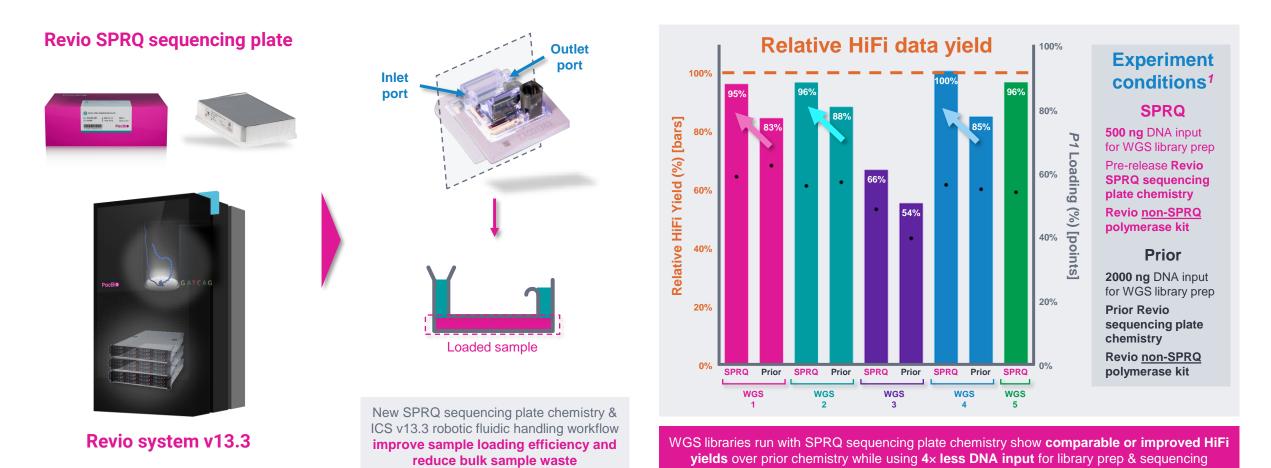
SPRQ DNA sequencing control is bound to new Revio SPRQ polymerase enzyme

	Expected control performance ¹			
Metric	Revio v13.1 DNA control	Revio v13.3 SPRQ DNA control		
Control read count	≥500	≥500		
Control polymerase read length (Mean)	≥40 kb	≥50 kb		
Control concordance (Mean)	≥0.88	≥0.88		

Expected control performance metrics shown are based on a 24 hrs movie collection time.

DNA internal control metrics are useful to help assess the performance of a sequencing run

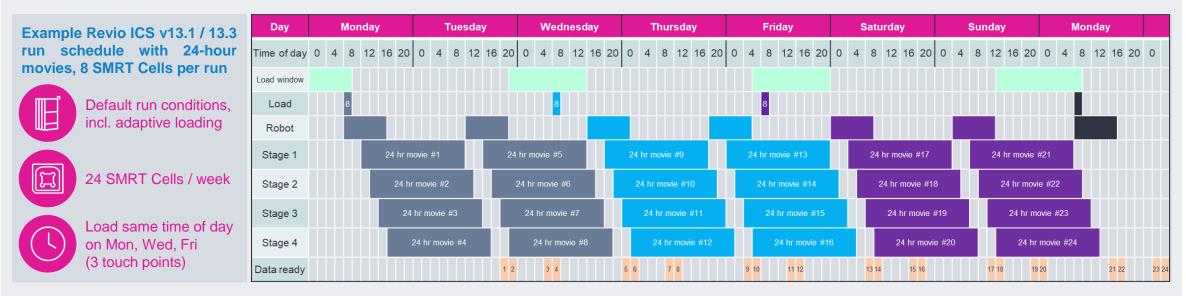
- If control read count or control read length is lower than expected
 - \rightarrow Focus troubleshooting on PacBio system and/or consumables
- If control performance appears normal,
 - $\rightarrow\,$ Focus troubleshooting on investigating DNA sample quality and/or library prep QC metrics
- For sequencing performance troubleshooting guidance, refer to *Revio run evaluation and troubleshooting guide* (<u>103-380-300</u>)² or contact PacBio <u>Technical Support</u>.



New Revio SPRQ chemistry reduces DNA input requirements

PacBi

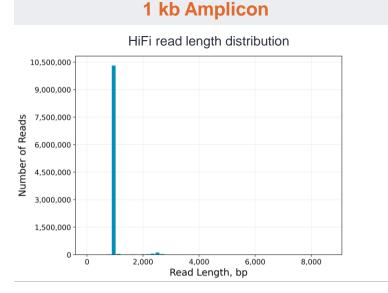
New SPRQ sequencing plate improves sample loading efficiency on Revio SMRT Cells, enabling 4× reduction in DNA sample input requirements for library prep compared to previous chemistry


Revio SPRQ chemistry enables HiFi sequencing to be performed with precious genomic samples using as little as 500 ng of input DNA

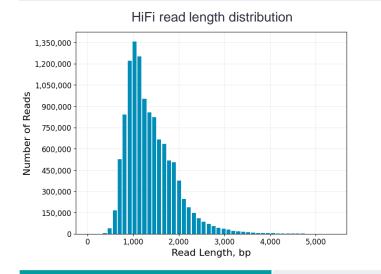
¹ HiFi data shown for Revio SPRQ sequencing plate chemistry were generated with a **Revio (non-SPRQ) polymerase kit** in conjunction with use of reduced input DNA amounts (**500 ng**) for WGS library prep. Data shown for prior Revio sequencing plate chemistry were generated with a **Revio (non-SPRQ) polymerase kit** in conjunction with use of higher input DNA amounts (**2000 ng**) for WGS library prep. 15

Revio instrument robotic workflow run times remain the same in v13.3 vs. v13.1

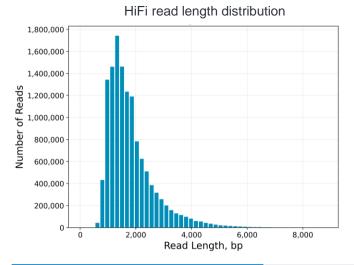
No modifications required to existing high-utilization Revio production run schedules



Example Revio system run schedule to process 24 Revio SMRT Cells per week¹


Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 576 hours of automated sequencing runtime per week (144 hours × 4 stages) and 3 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

New Revio SPRQ chemistry enables more robust sequencing performance for short inserts


New SPRQ chemistry improves consistency of loading short insert libraries on Revio SMRT Cells¹

1.3 kb Monomer full-length RNA

1.8 kb Monomer full-length RNA

P1	82%
HiFi Reads	12.9 M
HiFi Base Yield	23.2 Gb
Mean HiFi Read Length	1.8 kb
Median HiFi Read Quality	Q45
HiFi Read Mean # of Passes	33

Example sequencing metrics for 1.8 kb UHRR monomer (non-Kinnex) full-length RNA sample run with Revio SPRQ sequencing plate / 200 pM on-plate concentration / 24-hrs movie time. HiFi yields ranged from ~11 – 13 M HiFi reads per Revio SMRT Cell for *P1* loadings ~65 – 85%.

P1	60.7%
HiFi Reads	10.7 M
HiFi Base Yield	11.2 Gb
Mean HiFi Read Length	1.04 kb
Median HiFi Read Quality	Q60
HiFi Read Mean # of Passes	46

Example sequencing metrics for 1 kb amplicon sample run with Revio SPRQ sequencing plate / 200 pM on-plate concentration / 24-hrs movie time. HiFi yields ranged from ~10 – 12 M HiFi reads per Revio SMRT Cell for *P1* loadings ~60 – 75%.

Example sequencing metrics for 1.3 kb monomer (non-Kinnex) fulllength RNA sample run with Revio SPRQ sequencing plate / 200 pM on-plate concentration / 24-hrs movie time. HiFi yields ranged from ~12 – 13 M HiFi reads per Revio SMRT Cell for *P1* loadings ~70 – 80%.

74%

11.9 M

16.2 Gb

1.37 kb

Q48

39

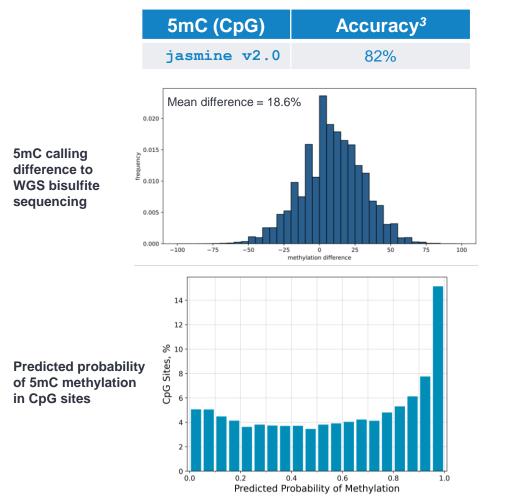
P1

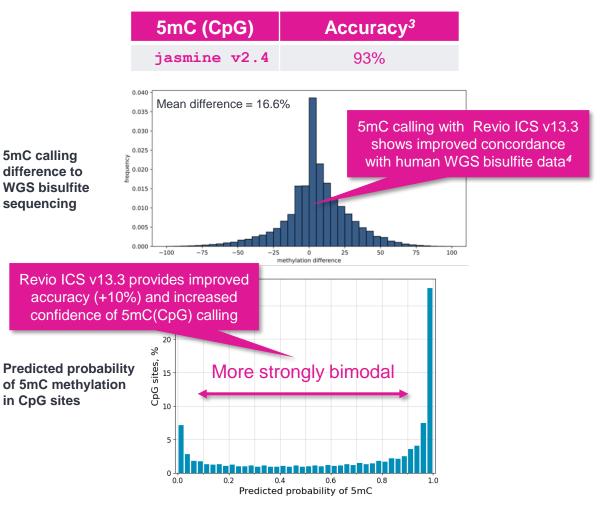
HiFi Reads

HiFi Base Yield

Mean HiFi Read Length

Median HiFi Read Quality

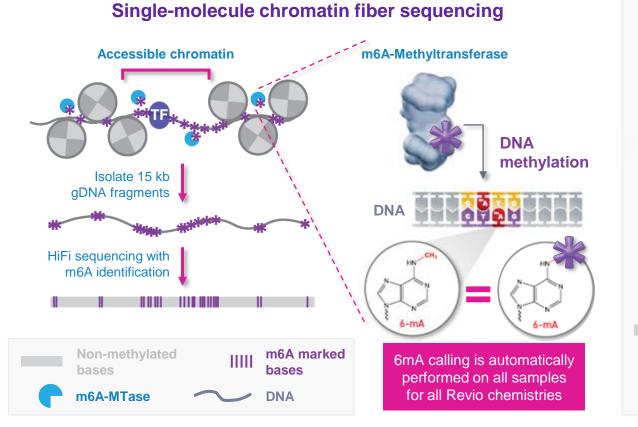

HiFi Read Mean # of Passes


Revio system v13.3 improves on-instrument methylation detection capabilities

Updated on-instrument methylation analysis software improves 5mC calling performance¹

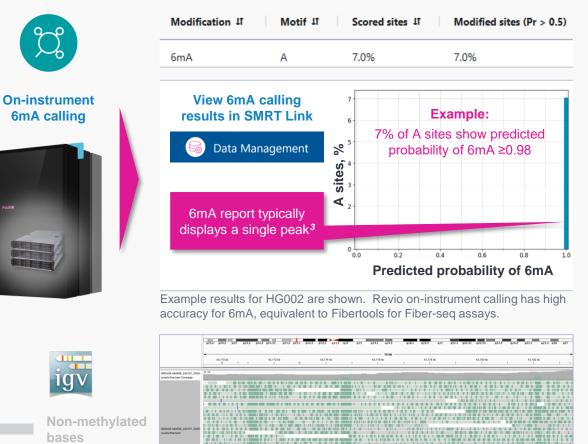
Example HG002 results for Revio ICS v13.1 / SMRT Link v13.1

Example HG002 results for Revio ICS v13.3²


- Revio system v13.3 methylation calling is automatically run for all samples and improves 5mC (in CPG) calling performance for both Revio SPRQ chemistry as well as the prior Revio v13.1 chemistry.
 5mC calling feature is only available on-instrument in Revio system ICS v13.3 and is not available for off-instrument analysis in SMRT Link v25.1 user interface under Data Utilities. If needed, however, users can still use the command line tool version of jasmine available through the PacBio GitHub website at https://github.com/PacificBiosciences/jasmine
- Pace : Example HG002 5mC (CpG) methylation calling data are shown. Accuracy = (TP + TN) / (TP + TN + FP + FN).
 - ⁴ Methylation difference plots were generated by comparing Revio system methylation calling data against human WGS bisulfite data.

Revio system v13.3 improves on-instrument methylation detection capabilities

Updated on-instrument methylation analysis software supports 6mA calling to enable Fiber-seq¹ applications


NEW Revio ICS v13.3 on-instrument 6mA calling feature

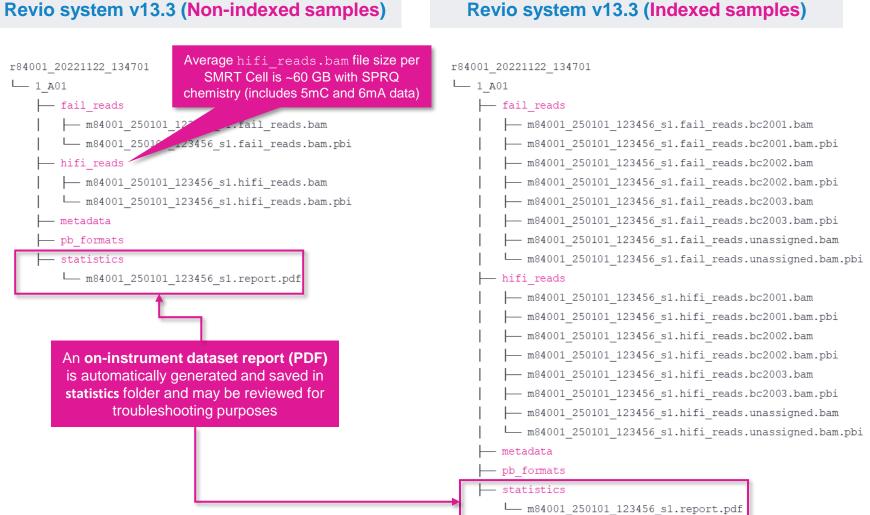
 On-instrument 6mA calling feature is intended to support enablement of Fiber-Seq applications and is <u>not</u> intended for use as a general 6mA caller for microbial genome analysis applications²

PacBi

6mA methylation calling facilitates Fiber-Seq analyses

¹ Stergachis, A., et al. (2022). Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449-1454.

² Note: For microbial 6mA and 4mC base modification detection applications, specify to save kinetic information in Run Design and then perform 6mA and 4mC calling in SMRT Link.


For on-instrument 6mA analysis in Revio system ICS v13.3, the model only reports 6mAs where probability of modification is >= 0.98 in order to reduce FPs and maximize disk use efficiency

m6A marked

bases

Revio system v13.3 output files & directory structure remain unchanged from v13.1

Example Revio v13.3 output file directory structures¹ for non-indexed samples vs. indexed (barcoded) samples

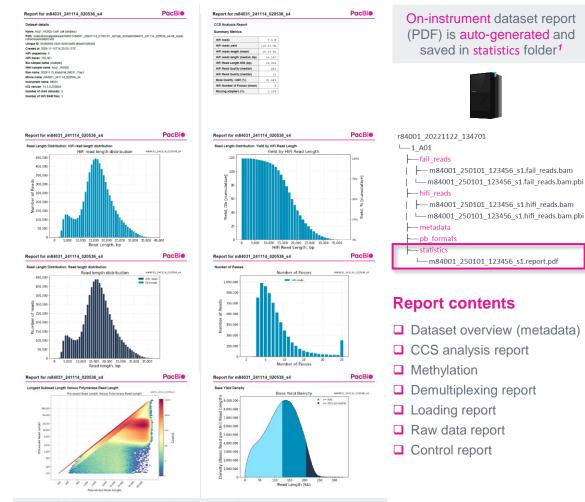
On-instrument dataset report (NEW)

Report for m84031_241114_020536_s4	PacBi
Dataset details	
Name: Acq1_HG002-Cell1 (all samples)	
Path: /collections/appslabvast/r84031/r84031_20241114_015813/1_A01/pb_formats/m84031_24 consensusreadset.xml	41114_020536_s4.hifi_reads
Unique ID: 0636d059-3423-4039-8e89-d6bd41926404	
Created at: 2024-11-15T14:29:29.137Z	
HIFI sequences: 6	
HIFI bases: 105,301	
Bio sample name: [multiple]	
Well sample name: Acq1_HG002	
Run name: 20241113_KuduVal_84031_Tray1	
Movie name: m84031_241114_020536_s4	
Instrument name: 84031	
ICS version: 13.3.0.253824	
Number of child datasets: 3	
Number of HiFi BAM files: 3	

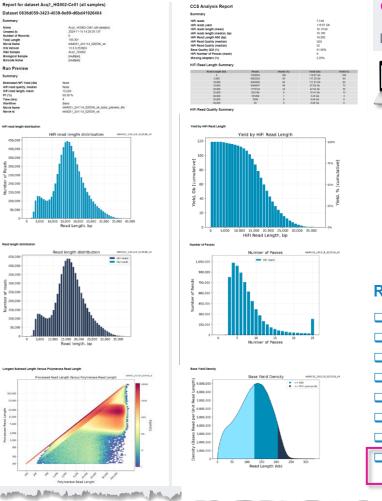
On-instrument dataset PDF report is similar to SMRT Link Data Management dataset details (exported PDF) report and contains useful QC information for a dataset:

- **Run setup** information
- Sequencing performance metrics (e.g., read length, *P1* loading, run QC plots)

Note: Data Management dataset details report includes additional information about secondary analysis parameters and results that are not included in the on-instrument dataset report²


¹ Refer to PacBio BAM format specification page (<u>https://pacbiofileformats.readthedocs.io/en/13.0/BAM.html</u>) for details about PacBio output data file structures.

Pace Note: On-instrument dataset report is generated after CCS, methylation calling and demultiplexing are completed for a sample and **does not include** any secondary analysis parameters or results that may have been generated through auto-analysis in Run Design or through manual analysis by users.


Revio system v13.3 on-instrument dataset report

Example on-instrument dataset details report vs. SMRT Link Data Management dataset details report

Revio v13.3 on-instrument dataset details report

SMRT Link Data Management dataset details report

Off-instrument dataset report is optionally generated in SMRT Link Data Management by user

Report contents

- Dataset overview (metadata)
- CCS analysis report
- Methylation
- Demultiplexing report
- Loading report
- Raw data report
- Control report
- Secondary analysis parameters and results

المراجعة المردي المحافظ والمرد والمراجع والمردول والمرد والمراجع والمحافظ والمحافظ والمحافظ والمراجع والمحافظ

PacBi

PacBi

Revio system v13.3 user experience improvements

SMRT Link v25.1 Sample Setup user interface updates – Home screen

Updated Sample Setup home screen improves clarity of supported calculator features

SMRT Link v13.1 Sample Setup home screen

PacBi

PacBio Sample Setup -			support is remove	
Sample Setup	+ Add Calculation	▼ Edit The Import		binding kit 3.1 & 3.2 is removed in v25.1
		Sequel II binding kit 2.1/2.2		vs 1 to 13 out of 3979 Search
□ Sample name ↓î	Date created	✓ Sequel II binding kit 3.1/3.2, Revio Revio polymerase kit 96	olymerase kit الس	Comment ↓↑
My Batch of Samples	2024-09-27, 09:	58:47 AM smark	Revio polymerase kit	(
My Batch of Samples	2024-09-26, 02:-	40:33 PM smark	Revio polymerase kit	

Sequel II binding kit 21 & 22

SMRT Link v25.1 Sample Setup home screen Renamed from "Revio polymerase kit" to "ABC calculator"¹ PacBi Select a Module 🔻 Notifications smark (Lab Tech) Sample Setup + Add Calculation TImport 🥕 Edit 土 Export 🔟 Delete √ Annealing, binding, cleanup (ABC) calculator A Displaying rows 1 to 11 out of 470 Search ... Loading calculator Renamed from "Revio polymerase kit 96" Sample name ↓↑ Date created created by 🔱 to "Loading calculator"2 My Batch of Samples 2024-11-20, 01:08:40 PM mboitano Revio polymeras My Batch of Samples 2024-11-19, 06:17:22 PM sizhang Revio polymerase kit

Note: To perform annealing, binding and cleanup with Revio SPRQ libraries, follow ABC instructions specified in the appropriate Procedure & checklist documentation.
 Loading calculator should be used to perform DNA sequencing control dilution and final sample dilution steps for Revio SPRQ libraries.

SMRT Link v25.1 Sample Setup user interface updates – General best practices

General best practices section includes additional clarifying instructions for preparing sequencing plate for loading¹

General best practices

PacBi

Eppendorf Lo-bind tubes (Eppendorf 022431021) are recommended for this protocol, but PCR tube strips (USA Scientific TempAssure 1402-4708) or 0.2 mL 96-well PCR plates are also acceptable. No difference in performance is expected across Lo-bind tubes, PCR tube strips, or plates.

To pipette-mix, gently pipette up and down until the solution appears homogenous, typically 10 times.

To prepare for the steps below, thaw the **Loading buffer** at **room temperature** and equilibrate the **SMRTbell cleanup beads** to **room temperature**. Store all other reagents on ice unless otherwise noted.

Mix reagent buffers with a brief vortex prior to use. Do not vortex enzymes.

Quick-spin all reagents in a microcentrifuge to collect liquid at bottom prior to use.

To prepare the sequencing plate for loading: 1) Thaw in a **room temperature** water bath for **60 minutes**, protected from light; 2) Visually inspect the plate for any remaining frozen reagents by lifting the plate to eye-level, without inverting, and examining from all angles. If any reagents remain frozen, thaw for an additional **15 minutes**, protected from light; 3) Once thawed, vortex/shake to mix for **1 minute** at **1200 rpm**; 4) Spin for **1 min** at **150 rcf** to ensure reagents are in the bottoms of each well; 5) Wipe with a new KimWipe to remove any moisture or contaminants from the plate foil.

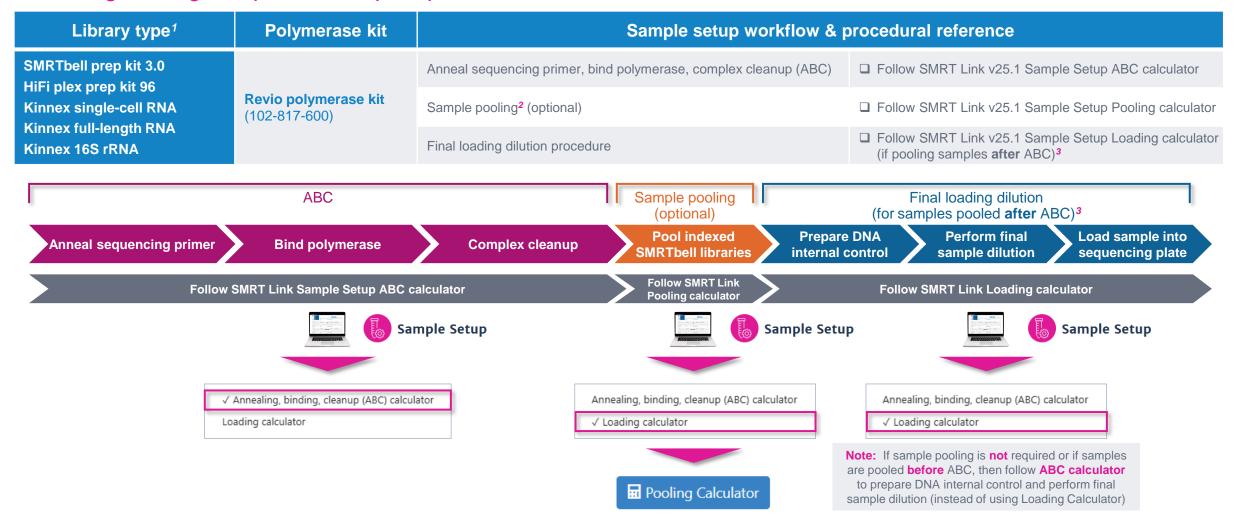
To pipette accurately into the sequencing plate, dispense the sample against the middle of the well side wall and avoid immersing the pipette tip in the sample during blow out.

¹ Note: Following statement is **removed** from Sample Setup v25.1 General best practices section of ABC calculator: "If multiplexing, it is recommended to pool SMRTbell libraries prior to Sample Setup. If pooling after Sample Setup, pool samples in equimolar ratios. Only pool samples that were bound with the same sequencing polymerase."

² If using the Loading calculator with Revio SPRQ libraries, follow the same instructions above to prepare the Revio SPRQ sequencing plate for loading.

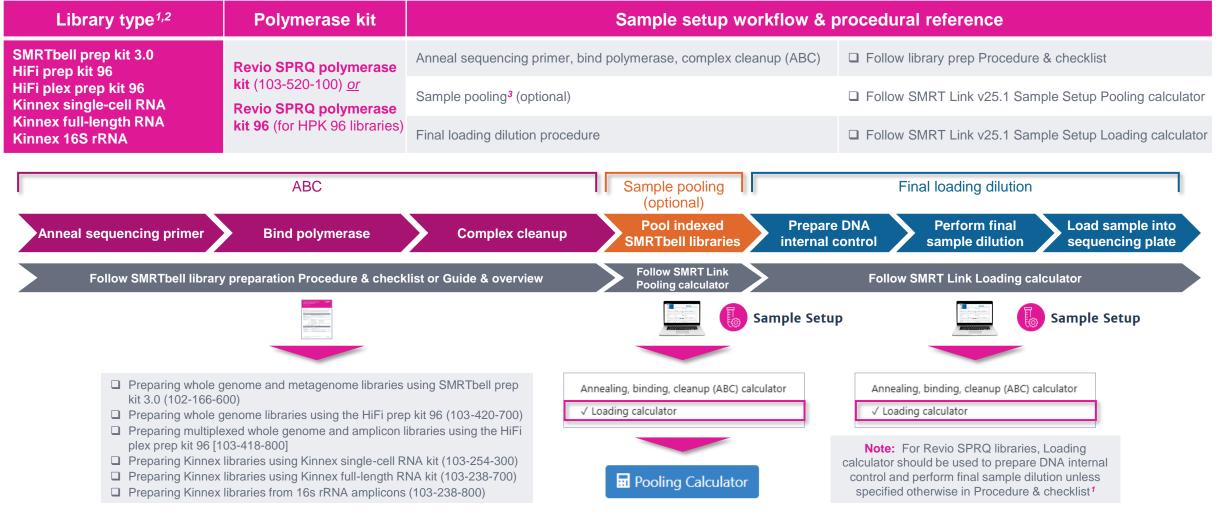
³ If reusing a Revio sequencing plate or Revio SPRQ sequencing plate: Store plate at 4°C protected from light – do not re-freeze. Sequencing plate can be stored for up to two weeks after first use.

Thawing instructions are also found in *Revio operations guide* (102-962-600) and remain the **same** for both Revio sequencing plate and Revio SPRQ sequencing plate^{2,3}



Sample setup workflow overview for Revio (non-SPRQ) polymerase libraries

For binding libraries with Revio polymerase kit, follow SMRT Link Sample Setup ABC calculator instructions for annealing/binding/complex cleanup steps


¹ For binding **PureTarget libraries** with Revio polymerase kit, follow PureTarget library prep Procedure & checklist (103-329-400) instructions for ABC, pooling & final dilution steps. For binding **HiFi prep kit 96 WGS libraries** with Revio polymerase kit 96, follow HiFi prep kit 96 WGS library prep Procedure & checklist (103-420-700) for sample setup instructions.

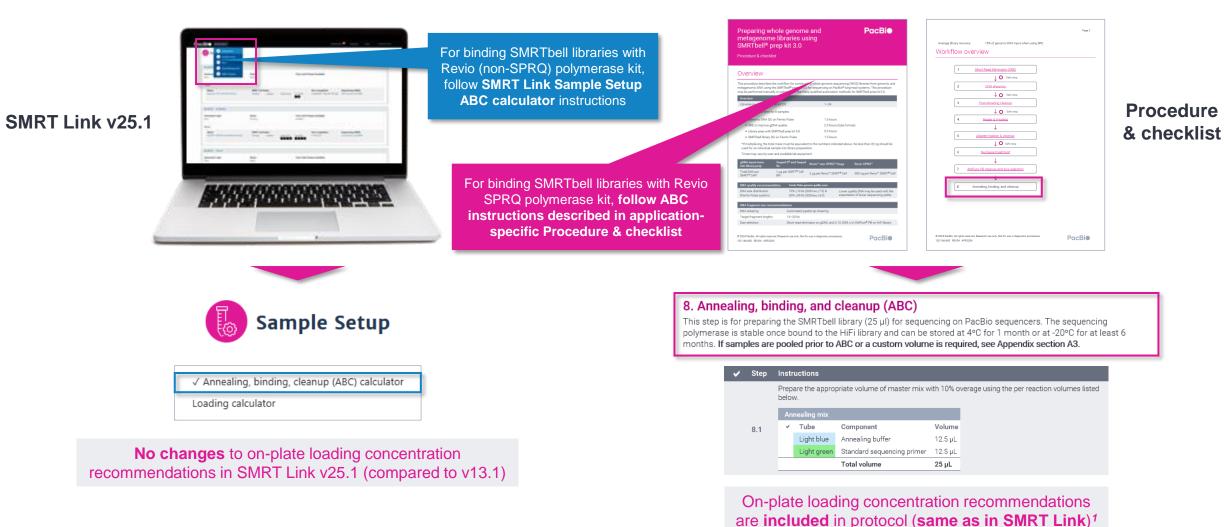
For low-multiplexing applications, it is generally recommended to pool adapter-indexed HiFi libraries post-ABC to prevent any potential inhibitor in one sample from affecting the polymerase binding of all samples in a pool. Note: For high-multiplexing applications (e.g., ≥24-plex) using HiFi plex prep kit 96 (or other high-throughput kits), adapter-indexed HiFi libraries will typically be pooled prior to ABC step26
If sample pooling is not required or if samples are pooled before ABC, then follow ABC calculator to prepare DNA internal control and perform final sample dilution (instead of using Loading Calculator).

Sample setup workflow overview for Revio SPRQ polymerase libraries

For binding libraries with Revio SPRQ polymerase kit / Revio SPRQ polymerase kit 96, follow library prep Procedure & checklist instructions for annealing/binding/complex cleanup steps

For binding PureTarget libraries with Revio SPRQ polymerase kit, follow PureTarget library prep Procedure & checklist (103-329-400) instructions for sample setup ABC, pooling and final dilution steps.
 If preparing HiFi prep kit 96 or HiFi plex prep kit libraries using automation, refer to the appropriate automation Guide & overview documentation for sample setup instructions.

PacBi

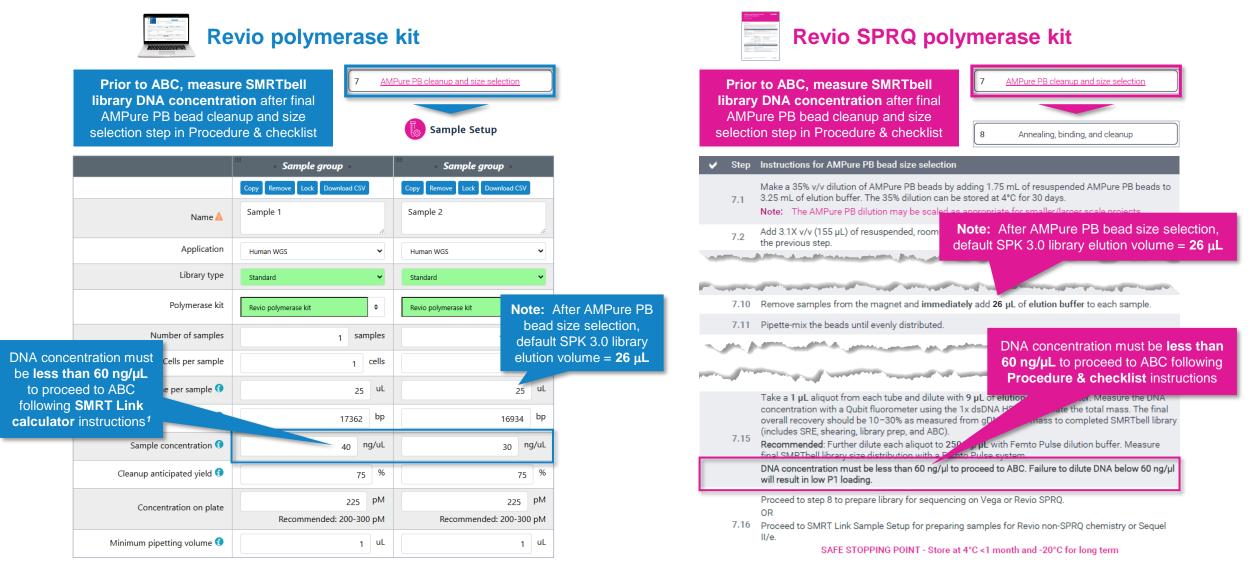

³ For low-multiplexing applications, it is generally recommended to pool adapter-indexed HiFi libraries post-ABC to prevent any potential inhibitor in one sample from affecting the polymerase binding of al²⁷ samples in a pool. **Note:** For high-multiplexing applications (e.g., ≥24-plex) using HiFi plex prep kit 96 (or other high-throughput kits), adapter-indexed HiFi libraries will typically be pooled prior to ABC step.

Use SMRT Link or refer to Procedure & checklist documentation to prepare libraries for sequencing

Revio polymerase kit

PacBi

Revio SPRQ polymerase kit

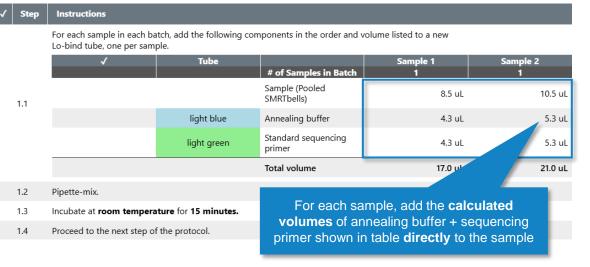


¹ Note: Recommended OPLC conditions are the **same** for both Revio non-SPRQ chemistry and Revio SPRQ chemistry.

Entering sample information for annealing, binding and cleanup procedure

Revio polymerase kit					Revio SPRQ polyme	erase kit
			Copy Remove Lock Download CSV			Page 2
SMRT Link v25.1 Sam ABC calculator does n e	ot support	Name 🛕		1	Average library recovery 15% of genomic DNA input when using SRE Workflow overview	
Revio SPRQ polyme	erase kit	Application	Human WGS 🗸 🗸		1 <u>Short Read Eliminator (SRE)</u>	
		Library type	Standard 🗸		2 DNA shearing	
		Polymerase kit	Revio polymerase kit 🗘		Safe stop	
				Enter all required sample	3 Post-shearing cleanup	
	Nur	mber of samples*	samples	information into SMRT	4 Repair & A-tailing	Refer to instructions in Procedure
	SMRT	Cells per sample*	cells	Link ABC calculator form ¹	↓	& checklist to perform ABC using
				\rightarrow ABC is performed using	5 Adapter ligation & cleanup	static (fixed) per-sample
	Available volum	e per sample* 🕤	uL	only the required volume of library	↓ O Safe stop	reagent & buffer volumes
		Insert size* 🕄	bp	or library	6 <u>Nuclease treatment</u>	
	Sample c	concentration* 😚	ng/uL		7 AMPure PB cleanup and size selection	
	Cleanup ant	ticipated yield 쥥	75 %		8 Annealing, binding, and cleanup	
	Concer	ntration on plate*	рМ			
	Concer	in a lon on place	Recommended: 200-300 pM		Entering sample information is r	
	Minimum pip	etting volume 🕄	1 uL	-	performing ABC using Procedur \rightarrow ABC is performed using the entire	
		Comment 😚			© 2024 PacBio. All rights reserved. Research use only. Not for use in diagnostic procedures. 102-166-600 REV04 APR2024	PacBi●

Entering sample information for annealing, binding and cleanup procedure



Example sample concentration and other sample information values shown in SMRT Link ABC calculator form are for illustrative purposes. For WGS samples processed with SMRTbell prep kit 3.0, 30 typical library construction yields are typically in the range of $\sim 13\% - 34\%$.

PacBi

1. Annealing sequencing primer

Revio SPRQ polymerase kit

Step Instructions

Prepare the appropriate volume of master mix with 10% overage using the per reaction volumes listed below.

	An	nealing mix			Prepare mas
8.1	~	Tube	Component	Volume	required (fix
		Light blue	Annealing buffer	12.5 µL	volumes of a
		Light green	Standard sequencing primer	12.5 µL	sequencing
			Total volume	25 µL	distribute f

Prepare master mix containing required (fixed) per-reaction volumes of annealing buffer + sequencing primer and then distribute to each sample

- 8.2 Pipette-mix the **Annealing mix** and quick spin to collect liquid.
- 8.3 Add 25 μL of the Annealing mix to each library. Total volume should equal 50 μL.
- 8.4 Pipette-mix each sample and quick spin to collect liquid.
- 8.5 Incubate at room temperature for 15 minutes
- 8.6 During primer incubation, prepare the polyme

الماليني والمعالي والمتحجير ومحمد فالمرجع فيتحاط والمرجع والمحاجز

Add **fixed volume (25 μL)** of Annealing mix to each sample. Total primer annealing reaction volume for each sample is **fixed at 50 μL**

Use the **fixed per-reaction volumes** of annealing buffer & sequencing primer shown in table and **do not adjust reagent volumes** based on measured DNA library conc. or insert size

Appendix

If samples are pooled prior to ABC or if a custom volume is required, use the calculations below to determine reagent volumes based on input sample volume:¹

	SMRTbell library	Annealing buffer	Standard sequencing primer	Polymerase dilution
Volume (µl)	х	x/2	x/2	x*2
Example	100	50	50	200

PacBi

¹ For example, if your starting library volume is 100 μL instead of 25 μL, then you simply use 4 times as much Annealing buffer and sequencing primer to make 100 μL of the master Annealing mix, and then add the 100 μL of master Annealing mix to your 100 μL of starting library to produce a total annealing reaction volume of 200 μL instead of 50 μL.

Binding sequencing polymerase

	Revio	polymerase	kit
--	-------	------------	-----

√ Step	Instructions						
	Dilute Sequencing polymerase						
	Add the following components in the order and volume listed to a new Lo-bind tube. The volume of reaction mix is sufficient for all samples in all batches.						
	\checkmark	Tube		Со	mponent	Reactio	n Mix 2 (RM2)
2.1		purple		Sequencing	polymerase		2.5 uL
		yellow		Polymerase b	buffer		39.2 uL
				Total volume	e		41.7 uL
2.2	Pipette-mix RM2 .						
	RM2 must be used immediately. Discard any remainder. Prepare polymerase dilution master mix						
	RM2 must be used immediately	. Discard any remaind					
	RM2 must be used immediately Bind Sequencing polymera			ntaining c	calculated vo	lumes of	sequencing
	-	ase	cor	ntaining c		lumes of	sequencing
	Bind Sequencing polymera	ase to each sample in each Tube	COr bat	ntaining c polyn	calculated vo nerase + poly Sample 1	lumes of	sequencing
2.3	Bind Sequencing polymera Add RM2 in the specified volume	ase to each sample in each Tube	COr bat	ntaining c polyn es in Batch	calculated vo nerase + poly ^{Sample 1} 1	lumes of	f sequencing buffer
2.3	Bind Sequencing polymera Add RM2 in the specified volume	ase to each sample in each Tube # Sa	COr bat of Sample	ntaining c polyn es in Batch	calculated vo nerase + poly Sample 1 1	lumes of merase	f sequencing buffer Sample 2 1
2.3	Bind Sequencing polymera Add RM2 in the specified volume	ase to each sample in each Tube # Sa R!	COR bat of Sample	es in Batch	calculated vo nerase + poly Sample 1 1 1 1	lumes of merase	f sequencing buffer Sample 2 1 21.0 uL
2.3	Bind Sequencing polymera Add RM2 in the specified volume	ase to each sample in each Tube # Sa R!	COr of Sample mple from M2	es in Batch	calculated vo nerase + poly Sample 1 1 1 1	lumes of merase 7.0 uL	f sequencing buffer Sample 2 1 21.0 uL 21.0 uL
	Add RM2 in the specified volume	ase to each sample in each Tube # Sa Ri To	COr of Sample imple from M2 ital volume	es in Batch step 1	calculated vo nerase + poly Sample 1 1 11 12 34	Iumes of merase 7.0 uL 7.0 uL 4.0 uL	f sequencing buffer Sample 2 1 21.0 uL 21.0 uL 42.0 uL
2.4	Add RM2 in the specified volume	ase to each sample in each Tube Sa Ri To por 15 minutes.	COr bat of Sample mple from v/2 ttal volume	es in Batch step 1	calculated vo nerase + poly Sample 1 1 1 1	lumes of merase 7.0 uL 7.0 uL 1.0 uL	f sequencing buffer 1 21.0 uL 21.0 uL 42.0 uL erase dilution
2.4	Bind Sequencing polymera Add RM2 in the specified volume Pipette-mix each sample.	ase to each sample in each Tube # Sa Ri To tor 15 minutes.	COr bat of Sample mple from M2 tal volume Add	d calcula master n ding read	calculated vo nerase + poly Sample 1 1 1 1 34 ated volume	Iumes of merase 7.0 uL 7.0 uL 6.0 uL of polym ample. Po will vary	sequencing buffer Sample 2 1 21.0 uL 21.0 uL 42.0 uL erase dilution olymerase depending or

Revio SPRQ polymerase kit

Step Instructions

To prepare the polymerase, add the following components to a new microcentrifuge tube on ice. Adjust component volumes for the number of samples being prepared, plus 10% overage.

	Pol	ymerase Diluti	on		Prepare polymerase dilutio
8.7	~	Tube	Component	Volume	master mix containing fixe
0.7		Yellow	Polymerase buffer	47 µL	per-reaction volumes of
		Purple	Sequencing polymerase	3 µL	sequencing polymerase + polymerase buffer
			Total volume	50 µL	
3.8	Pipet	tte mix the po	lymerase dilution and	<u>quick-spin</u> to	o collect liquid.
			11		

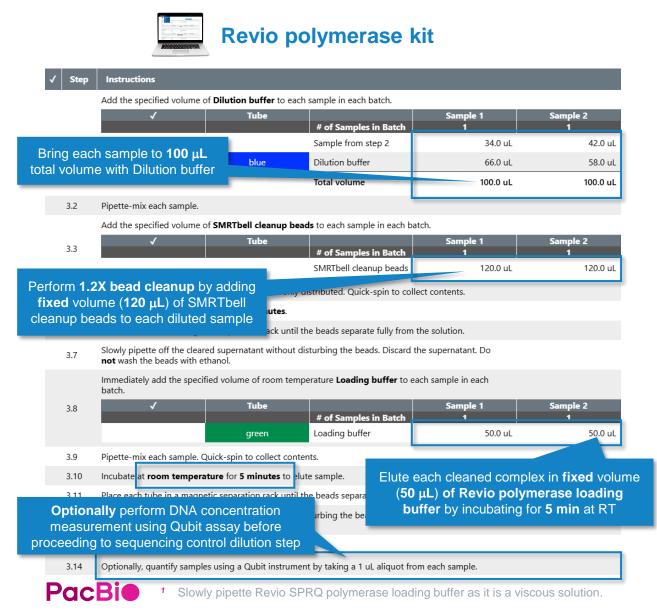
Pipette-mix each sample and quick-spin to collect liquid

- 8.9 Add **50 µL of polymerase dilution** to primer annealed sample. Total volume should equal **100 µL**.
- Incubate at room temperature for 15 minutes. 8.11
- 8.12 Proceed immediately to the next step of the protoco

والمحمد فالألفين ورافعال والتلافية وستحملهم فألسف فالمتحاط السيب والتنافي

Add fixed volume (50 µL) of polymerase dilution master mix to each sample. Polymerase binding reaction volume is fixed at 100 µL

Appendix


8.10

If samples are pooled prior to ABC or if a custom volume is required, use the calculations below to determine reagent volumes based on input sample volume:¹

SMRTbell library		Annealing buffer Standard sequencing primer		Polymerase dilution	
Volume (µl)	Х	x/2	x/2	x*2	
Example	100	50	50	200	

PacBi

3. Purification of polymerase-bound SMRTbell complexes

Revio SPRQ polymerase kit

✓	Step	Instructions					
		Post-binding cleanup with 1X SMRTbell cleanup beads					
	8.13	Add 100 μL of resuspended, room-temperature SMRTbell cleanup beads to each sample					
	8.14	Pipette-mix the beads until evenly distributed and quality on in if necessary to collect all liquid from the sides of the tube.					
	8.15	Incubate at room temperature for 10 minutes to Perform 1.0X bead cleanup by adding					
	8.16	Place sample on an appropriate magnet and alle fixed volume (100 µL) of SMRTbell cleanup					
	8.17	Slowly remove the cleared supernatant without beads directly to each sample (100 μL) DO NOT USE EtOH. Proceed immediately to the elution. It is important not to let the beads dry out.					
	8.18	Remove sample from the magnet and immediately add resuspend the beads by pipette mixing.Elute each cleaned complex in fixed volume (25 μL) of Revio SPRQ polymerase loading buffer ¹ by 					
	8.19	Quick-spin the samples to collect any liquid from the sides of the tube.					
	8.20	Incubate a room temperature for 15 minutes to elute DNA					
	8.21	Place sample on magnet and allow beads to separate fully from the solution					
	8.22	Slowly remove the cleared eluate without disturbin Discard the old tube with beads Perform DNA concentration measurement using Qubit assay (required)					
	8.23	Use 1 µL of sample to measure DNA concentration with a Qubit fluorometer using the 1x dsDNA HS kit. Important: The Qubit Flex instrument is not compatible with measuring polymerase-bound library in Loading Buffer 96. Concentration readings will not be accurate.					
	8.24	Proceed to the Loading Calculator in SMRT Link v25.1or higher to calculate the final dilution for adding the sample to Sequencing reagent plate. The recommended loading concentration is 200 – 300 pM.					
		Polymerase-bound libraries can be stored at 4%0 for a performance.					
		PROTOCC loading dilution step using recommended OPLC					

4. Sequencing control dilution

Perform three sequential dilution steps of **Sequencing control** using **Dilution buffer**. Use a new Lobind tube for each dilution step. The volume is sufficient for all samples in all batches.

Step	D Instructions					
	Perform a first dilution by adding Dilution buffer to Sequencing control.					
	✓	Tube	Component	Dilution 1		
4.1		blue	Dilution buffer	19.0 uL		
		red	Sequencing control	1.0 uL		
			Total volume	20.0 uL		
4.2	Pipette-mix the dilution. Quick-spin to	collect contents. Keep	on ice.			
	Perform a second dilution by adding I	Dilution buffer to Dilut	tion 1.			
	✓	Tube	Component	Dilution 2		
4.3		blue	Dilution buffer	19.0 uL		
			Dilution 1	1.0 uL		
			Total volume	20.0 uL		
4.4	Pipette-mix the dilution. Quick-spin to	collect contents. Keep	on ice.			
	Perform a third dilution by adding Dil	ution buffer to Dilutio	n 2.			
	✓	Tube	Component	Dilution 3		
4.5		blue	Dilution buffer	19.0 uL		
			Dilution 2	1.0 uL		
			Total volume	20.0 uL		
4.6	Pipette-mix the dilution. Quick-spin to	collect contents.				
4.7	Discard Dilution 1 and Dilution 2.	Discard Dilution 1 and Dilution 2.				
4.0						

SMRT Link v25.1

\checkmark Annealing, binding, cleanup (ABC) calculator
Loading calculator

PacBi

SMRT Link Loading Calculator procedure for Revio SPRQ polymerase libraries

Enter required sample information to perform sequencing control dilution and final loading dilution steps

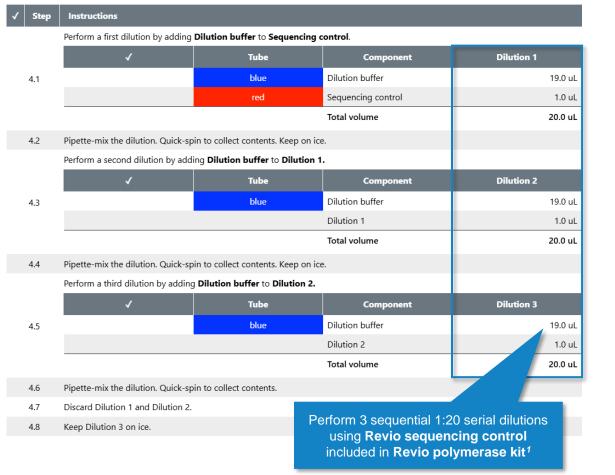
1.	Specify polymerase kit and number of samples to	2
	use	

- Specify polymerase kit type
- Specify the number (1-4) of sample wells to use per sequencing plate
- Note: If you are using only one sequencing plate, specify 0 for Plate 2

2. Enter information for first sample well

- Sample name
- Concentration (ng/μL)
- Average insert size (in base pairs)
- Loading concentration (in pM)
- Comments (optional)
- **Note:** If using a partially-used sequencing plate, can delete a Well ID by clicking on the '**x**' button at right-hand side of table
- 3. Repeat Step 2 for additional sample wells
 - **Note:** All sample wells must be filled in for the instructions to display.
- 4. Print instructions (optional)
 - To print the calculation(s) and instructions, click the Print button.

PacBio Select a Module -		Notifications Se	ttings Help	smark (Lab Tech)
Sample Setup / Loading calculator The Loading calculator provides instructions for the final loading dilution for previously- libraries. Input the number of sample wells being prepared, followed by the input concer concentration of each sample. The tool will return instructions for making the final dilution	ntration, average insert size, and loading		🖬 Pooling Calculato	r 🖶 Print 4
Sequencing plates Polymerase kit Revio SPRQ polymerase kit Plate 1 wells 2 Plate 2 wells 0 Plate 1	17			
Wel الله Sample name* الله المعالية ال	oading conc. (pM)* لأ		6	tı I
IIII A01 Sample 1 5.2 17362 2	Revio SPRQ sequencing	control dilution and final load	ing dilution workflow	×
IIII B01 Sample 2 3.1 16934 I	Revio SPRQ sequencing	control dilution and final load	ing dilution workflow	3 ×


	control dilution	and using this data buffer line a re-		
	district impact bequenting con it step. The solume is sufficient for	and using Orbuften buffee . Use a ner r all complex is all botches.	10-	
Stag bullents				
Pathers 4	first dilution by adding Bilation k	offer in Separating control		
	4	lide	Comparent	Obation 1
			Dilation India	192.4
			Inspending cantild	124
			Tarial valuese	202.4
12 Fpetto-el	is the dilution. Quick-spin to collec	1 cormette Xang co kin.		
Perform a	second dilution by adding Billetia	n buffer 1: Dilution 1.		
14			Diatos bullar	192-4
			Dilution 1	13-4
			Tetal volume	20.0-4
14 Ppetersi	is the efflation. Quick spin to collect	t contents. Xang on los.		
Parliance a	third distanting adding Dilution 1			
15		No.	Dialize India	192.4
			Eduction 3	124
			Netal volume	20.0-4
	is the dilution. Quick-spin to collec	1 contents.		
	lution 1 and Oilution 2.			
18 Keep Dilut	ion 3 on its.			

Loading Calculator outputs instructions for sequencing control dilution and final loading dilution procedure

4. Sequencing control dilution (cont.)

Perform three sequential dilution steps of **Sequencing control** using **Dilution buffer**. Use a new Lobind tube for each dilution step. The volume is sufficient for all samples in all batches.

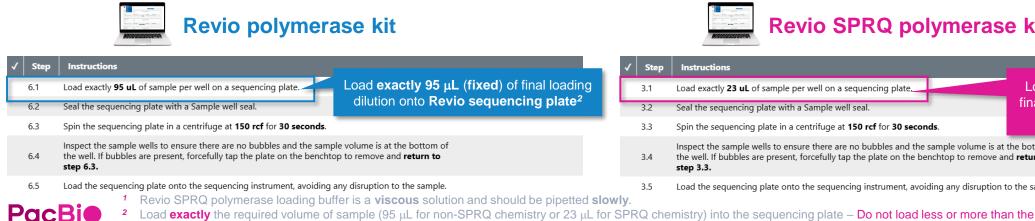
Perform three sequential dilution steps of **Sequencing control** using **Dilution buffer**. Use a new Lobind tube for each dilution step. The volume is sufficient for all samples in all batches.

Step Instructions

Perform a first dilution by adding Dilution buffer to Sequencing control.

	✓	Tube	Component	Dilution 1
1.1		blue	Dilution buffer	19.0 uL
		red	Sequencing control	1.0 uL
			Total volume	20.0 uL
1.2	Pipette-mix the dilution. Quick-spin	n to collect contents. Kee	p on ice.	
	Perform a second dilution by adding	g Dilution buffer to Dil	ution 1.	
	✓	Tube	Component	Dilution 2
1.3		blue	Dilution buffer	19.0 uL
			Dilution 1	1.0 uL
			Total volume	20.0 uL
1.4	Pipette-mix the dilution. Quick-spin	n to collect contents. Kee	p on ice.	
	Perform a third dilution by adding I	Dilution buffer to Dilut	ion 2.	
	✓	Tube	Component	Dilution 3
1.5		blue	Dilution buffer	19.0 uL
			Dilution 2	1.0 uL
			Total volume	20.0 uL
1.6	Pipette-mix the dilution. Quick-spin	to collect contents.		
1.7	Discard Dilution 1 and Dilution 2.			
1.8	Keep Dilution 3 on ice.		Perform 3 sequential 1:20 using Revio SPRQ sequ	
			included in Revio SPRQ	

PacBi

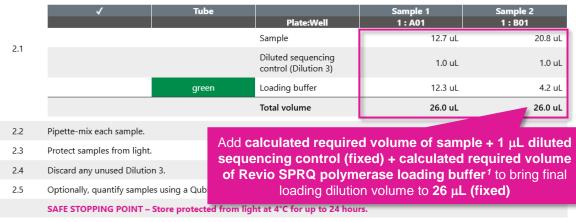

1 Revio polymerase kit (102-817-600) includes Revio sequencing control PN 102-798-000.

² Revio SPRQ polymerase kit (103-520-100) includes Revio SPRQ sequencing control PN 103-508-800.

5. Final loading dilution

		evio p	olymerase k	cit	
√ Step	Instructions				
	For each sample in each batch, add	the following co	omponents to each sample tub	pe from Step 3.	
	✓	Tube		Sample 1	Sample 2
			# of Samples in Batch	1	1
			Sample	50.0 uL	50.0 uL
5.1			Diluted sequencing control (Dilution 3)	3.0 uL	3.0 uL
		green	Loading buffer	47.0 uL	47.0 uL
			Total volume	100.0 uL	100.0 uL
5.2	Pipette-mix each sample.				
5.3	Protect samples from light.		d volumes of sampl		
5.4	Discard any unused Dilution 3.		(3 μL) + Revio poly ng final loading dilut		
5.5	Optionally, quantify samples using		ng ina loading alla		
	SAFE STOPPING POINT - Store pr	otected from li	ght at 4°C for up to 24 hour	s.	

Sample loading on sequencing plate



stated required volume as this can have a negative impact on sequencing performance.

Instructions

For each sample, add the following components in the order and volume listed to a new Lo-bind tube.

Revio SPRQ polymerase kit

Load exactly 23 uL of sample per well on a sequencing plate

Load exactly 23 µL (fixed) of final loading dilution onto Revio SPRQ sequencing plate²

Spin the sequencing plate in a centrifuge at 150 rcf for 30 seconds.

Inspect the sample wells to ensure there are no bubbles and the sample volume is at the bottom of the well. If bubbles are present, forcefully tap the plate on the benchtop to remove and return to

Load the sequencing plate onto the sequencing instrument, avoiding any disruption to the sample.

SMRT Link v25.1 Run Design user interface updates

SMRT Link v25.1 Revio system Run Design page layout is streamlined to remove obsoleted/unsupported fields

Revio system Run Design v25.1 example – Human WGS application

		Notifications [®] Settings Help smark (Lab Tech)	Revio system Run Design fields/options listed below					
Runs / Create New New Run Design		X Cancel The Add Sample View Summary Save	are <u>removed</u> from SMRT Link v25.1					
Run 2 tion	Sample Information	Note: Il ibrom: Concentration?	1 Run Options panel Run Options					
	Plate 1, Well A01: Demo_Library_Sample_1	Note: 'Library Concentration' field is moved from Run Options						
'Polymerase kit' field is removed from Sample	Import from Sample Setup El Select Sample Application Human WGS	to Sample Information main panel	2 Polymerase kit Polymerase Kit Required					
Information panel in v25.12	Plate Well Ø Plate 1, Well A01 Vell Name Ø Demo_Library_San	(→ Run Options section is removed in v25.1)	3 Same Barcodes on Both Ends of Sequence Same Barcodes on Both Ends of Sequence YES NO					
Plate 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Well Comment Library Type Required Insert Size (bp) 18000 1800 180		V Data Options					
'Same Barcodes on Both Ends of Sequence –	Library Concentration (pM) 225 Structure Movie Acquisition Time (hours) 24	•	Include Base Kinetics 🕄 🔷 YES 💿 NO					
YES/NO' field is <u>removed</u> from Samples panel in v25.1 ³	Samples Sample is indexed • YES • NO		Consensus Mode O MOLECULE O STRAND					
	Indexes Required Biosample names ()		Assign Data To Project 🕄 General Project 💠					
	Biosample names Prepaired Interactively Prepaired Data Options	From a File	Analysis Options No changes to Data Option or Analysis Options					
PacBle	> Analysis Options		Add Analysis 🔷 YES 💿 NO					
			Analysis Name					
	Runs 👤	'Run Options' panel is <u>removed</u> in v25.1 ¹	Select Analysis Workflow 💷 💠					

¹ Note: 'Run Options' panel is removed since 'Library Concentration' field is moved (from Run Options) to Sample Information main panel.

² Note: 'Polymerase kit' field is removed since all required information about the sequencing chemistry version is automatically provided by the sequencing plate information fields.

Pacbio ³ Note: 'Same Barcodes on Both Ends of Sequence' field is removed since Revio system only supports on-instrument demultiplexing of symmetrically-indexed samples. For demultiplexing of nonsymmetrically indexed samples a demultiplexing analysis job can be performed off-instrument in SMRT Link.

SMRT Link v25.1 Run Design user interface updates – Run information panel

Updated Run Information panel supports new Revio SPRQ consumables

Run Information	Runs
Instrument Type	
O Revio ○ Vega	
Run Name	
Run 10.23.2024 14:16	
Plate 1 Required 🕄	elect Revio SPRQ sequencing plate in Plate field drop-down menu
Revio sequencing plate Revio sequencing plate - 1 rxn	
Revio SPRQ sequencing plate Revio SPRQ sequencing plate - 1 rxn Revio SPRQ sequencing plate - 1 rxn	
Lot Serial Expiry	
Run Comments	Revio SPRQ sequencing plate – 4 rxn (103-504-900) ¹
Transfer Subdirectory 🕄	 Contains reagents for sequencing 4 Revio SMRT Cells on the Revio system Includes foil seals to prevent sample evaporation
Use Adaptive Loading	
• YES ONO	

SMRT Link v25.1 Run Design user interface updates – Analysis Options

Updated Analysis Options section features a more streamlined analysis workflow dropdown menu

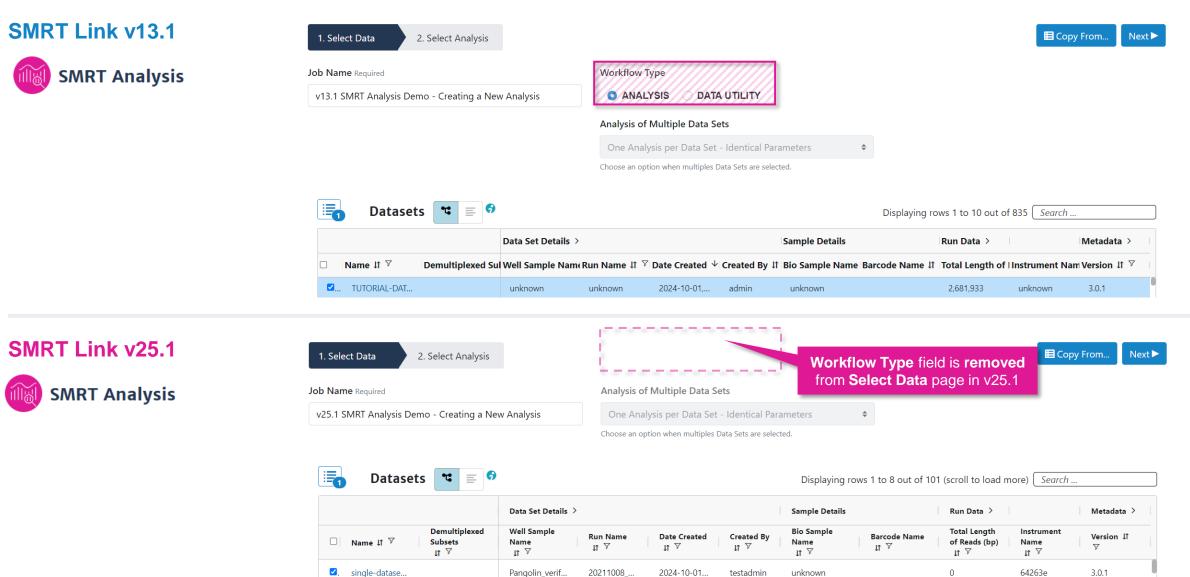
alysis Options		 Analysis Options 	
Add Analysis		Add Analysis	
Analysis Name Required	Demo_analysis_workflow	Analysis Name Required	Demo_analysis_workflow
Select Analysis Workflow Required	Genome Assembly	Select Analysis Workflow Required	 Analysis
	HiFi Mapping HiFi Target Enrichment		HiFi Mapping HiFi Target Enrichment
Removed in v25.1	Iso-Seq Analysis Microbial Genome Analysis PureTarget repeat expansion	Analysis and Data utility headers added in v25.1	Iso-Seq Analysis Microbial Genome Analysis PureTarget repeat expansion
	Read Segmentation Read Segmentation and Iso-Seq	Note: Variant calling	Read Segmentation and Iso-Seq Read Segmentation and Single-Cell Iso-Seq
	Read Segmentation and Single-Cell Iso-Seq Structural Variant Calling	application includes structural variant (SV) calling analysis ¹	Variant Calling Data utility
	Variant Calling		Read Segmentation

SMRT Link v25.1 Run Details report updates – Run QC metrics table

Key primary sequencing QC metrics reported in Run Details table remain the same

Runs SMRT Link v13.1

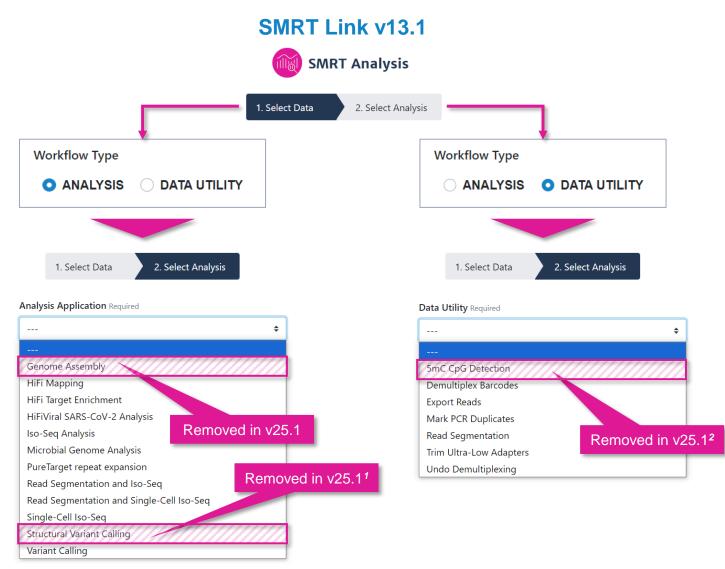
Well >		Run >		Productivity				HiFi reads					Polymerase reads >	Control reads	; >	Library	File Transfer		
Plate well	Well name	Status	Movie time	Total bases	P0	P1	P2	Reads	Yield	Length (mean)	Read quality (medi	Q30+ bases	Pol. read length (mean)		Read length (mean)	Missing adapter		Action	
1 D01	HiFi WGS Sample	Complete	24 hr	1,163 Gb	33%	67%	1%	6.4 M	104.1 Gb	16.4 kb	Q28	93%	69.0 kb	2,479	51.3 kb	7.0%	Complete	Retry File Transfer	

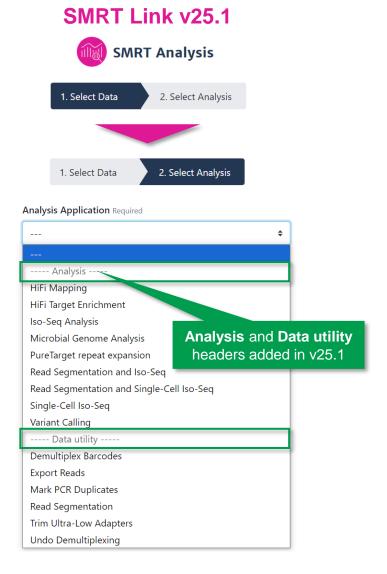

Basic Previe	ew (estimates))	Full Preview (estimates)								
Time (hr)	P1%	HiFi read length (mean)	Time (hr)	HiFi yield	HiFi read length (mean)	HiFi read quality (median)					
4	64%	14.4 kb	23	97.1 Gb	16.1 kb	Q28					

Column headers and reported metrics remain mostly unchanged ¹				Runs SMRT Link v25.1							an optionally lers to view o						
Well >		Run >		HiFi reads					Productiv	vity >	Polymerase reads	>	Control read	ds >	File transfer		
Plate well	Well name	Status	Movie time	Reads	Yield	Length (mean)	Read quality (median)	Q30+ bases	P1	Total bases	Pol. read length (mean)	Pol. read length (N50)	Reads	Read length (mean)	Status	Action	
1 A01	HiFi WGS_Sample	Complete	24 hr	8.2 M	128.5 Gb	15.7 kb	Q34	93%	70%	1,348 Gb	76.2 kb	139.3 kb	501	65.5 kb	Complete	Retry File Transfer	

	Basic previe	w (estimate	es) F	ull preview	(estimates)				Productiv	vity <			Polymerase r	eads <				
,	Time	P1	HiFi read length (mean)	Time	HiFi yield	HiFi read length (mean)	HiFi read quality (median)	•	P1	Total bases	PO	P2	Pol. read length (mean)	Pol. read length (N50)	Longest subread (mean)	Longest subread (N50)	Base rate	Missing adapter
	4 hr	65%	13.0 kb	23 hr	121.5 Gb	15.7 kb	Q33		70%	1,348 Gb	29%	0%	76.2 kb	139.3 kb	16.8 kb	19.8 kb	2.2 bp/s	4.7%

SMRT Link v25.1 SMRT Analysis user interface updates – Create New Job

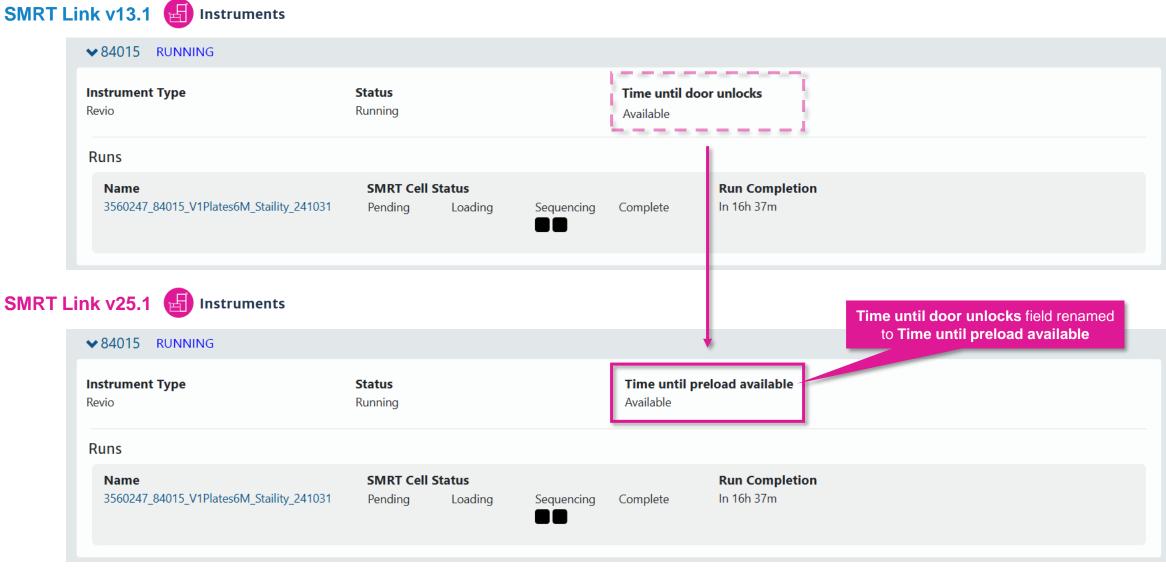

Updated SMRT Analysis interface enables more streamlined job creation workflow



PacBi

SMRT Link v25.1 SMRT Analysis user interface updates – Create New Job (cont.)

Updated SMRT Analysis interface enables more streamlined job creation workflow



SMRT Link v25.1 Variant Calling application includes structural variant (SV) calling analysis.

SMRT Link v25.1 Instruments module user interface updates

Minor update to Instruments home screen (Run Preview metrics and other features remain the same)

PacBi

PacBi

Revio system v13.3 applications & protocol updates

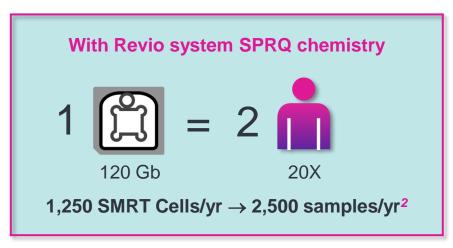
Revio system v13.3 supported applications & protocols

SPRQ chemistry is compatible with all SMRTbell prep kit 3.0, HiFi prep/plex kit 96, Kinnex, and PureTarget protocols

Sequencing method	Application	Protocol or Guide ¹
		Preparing whole genome and metagenome libraries using SPK 3.0 [102-166-600] [UPDATED]
		Short Read Eliminator (SRE), DNA shearing, and cleanup for the Hamilton Microlab Prep system [103-424-100] [UPDATED]
	Large genome & small (microbial)	Preparing whole genome libraries using the HiFi prep kit 96 [103-420-700] [UPDATED]
Whole genome sequencing	genome WGS ²	Automated HiFi prep 96 and HiFi ABC for the Hamilton NGS STAR MOA system [103-425-700] [UPDATED]
		Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800] [UPDATED]
		Automated HiFi plex prep 96 for the Hamilton NGS STAR MOA system [103-425-800] [UPDATED]
	Ultra-Low DNA input WGS	Preparing HiFi SMRTbell Libraries from Ultra-Low DNA Input [101-987-800] [Update TBD]
	Kinnex full-length RNA	Preparing Kinnex libraries using Kinnex single-cell RNA kit [103-254-300] [UPDATED]
RNA sequencing	Kinnex single-cell RNA	Preparing Kinnex libraries using Kinnex full-length RNA kit [103-238-700] [UPDATED]
		Preparing multiplexed amplicon libraries using SMRTbell prep kit 3.0 [102-359-000] [UPDATED]
	Amplicon sequencing	Preparing multiplexed amplicon libraries using PacBio barcoded M13 primers & SMRTbell prep kit 3.0 [101-921-300] [Update TBD]
Targeted sequencing		Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800] [UPDATED]
	HiFi target enrichment sequencing	Preparing multiplexed amplicon libraries using SPK 3.0 [102-359-000] [UPDATED]
	PureTarget sequencing	Generating PureTarget repeat expansion panel libraries [103-329-400] [UPDATED]
Viral sequencing	Adeno-associated virus (AAV)	Preparing multiplexed AAV SMRTbell libraries using SPK 3.0 [102-126-400] [UPDATED]
	Shotgun metagenomic assembly	Preparing whole genome and metagenome libraries using SPK 3.0 [102-166-600] [UPDATED]
Metagenomics	Shotgun metagenomic profiling	Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800] [UPDATED]
	Kinnex full-length 16S	Preparing Kinnex libraries from 16s rRNA amplicons [103-238-800] [UPDATED]

PacBi

[UPDATED] = Procedure & checklist is updated to support reduced DNA input requirements for SMRTbell library preparation and/or to include sample setup ABC guidance for Revio SPRQ chemistry
 Includes human/animal/plant/other WGS, microbial WGS, and shotgun metagenomic profiling or assembly.

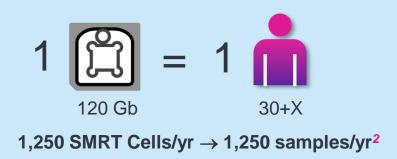

Revio system v13.3 whole genome sequencing application updates

Revio SPRQ chemistry enables 2 human genomes to be sequenced to 20X coverage per SMRT Cell¹

20× Human WGS

High accuracy SNV, SV calling performance at lower cost per genome; higher throughput + 5mC

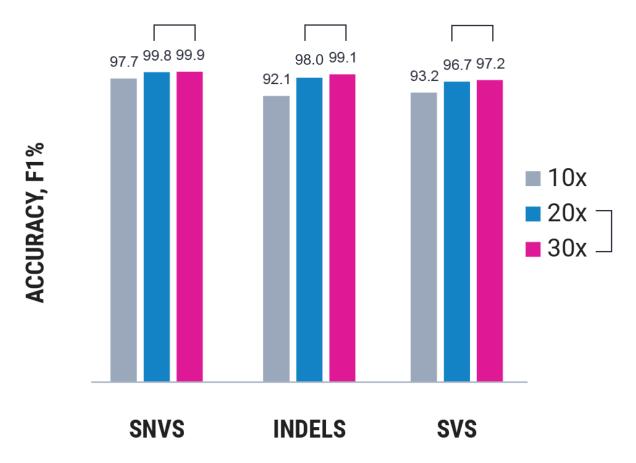
- Population genomics (saliva samples)
- Disease cohort studies
- Screening, polygenic risk scores
- Complex disease profiling
- Clinical research



Improved power to detect and discover novel variants, now with lower input DNA requirements

- Rare disease studies / NICU (blood samples)
- Reference-grade *de novo* assembled genomes
- De novo mutation detection
- Population reference genomes
- Genome benchmarking
- Tumor sequencing

With Revio system SPRQ chemistry



PacBie ¹ Cov 2 Ann

Coverage may vary based on sample quality, library quality, and fragment lengths. Annual throughput is estimated and based on 1,250 Revio SMRT Cells for 24 hr runs.

Revio system v13.3 whole genome sequencing application updates (cont.)

20X HiFi WGS coverage approaches variant detection accuracy at 30X HiFi WGS coverage¹ with significant cost savings

Data shown is for a single Revio SMRT Cell for HG002/GM24385 sequenced with SPRQ chemistry.²

Revio system v13.3 Kinnex application updates

Revio SPRQ chemistry allows for higher data throughput and/or higher sample multiplexing¹ for Kinnex applications

		Kinnex single-cell RNA kit	Kinnex full-length RNA kit	Kinnex 16S RNA kit
😤 KII	NNEX			
Example applicat	ion	Cell-type specific isoform discovery	Full-length isoform discovery	Full-length 16S rRNA for species identification
	Sequel II/IIe	30-40M	15-20M	20-25M
Throughput (per SMRT Cell)	Revio	80-100M	30-40M	50-60M
	Revio SPRQ	100-120M	50-60M	60-80M
	Sequel II/IIe	1-plex	3-plex (5M reads per sample)	384-plex
Sample multiplexing	Revio	For 10,000 unique reads per single cell: \rightarrow 1-plex for 5,000 – 10,000 cells input \rightarrow 2-plex for <5,000 cells input	4-plex (10M reads per sample)	384- to 1536-plex
	Revio SPRQ	For 12,000 unique reads per single cell: \rightarrow 1-plex for 5,000 – 10,000 cells input \rightarrow 2-plex for <5,000 cells input	6-plex (10M reads per sample) 12-plex (5M reads per sample)	384- to 1536-plex

Revio system v13.3 PureTarget sequencing application updates

Revio SPRQ achieves excellent PureTarget coverage performance with reduced DNA sample input amounts

PureTarget application specifications	Revio	Revio SPRQ		
DNA input	2 μ g/sample (or 100 μ g total per pool)	1 μg/sample (or up to 50 μg total per pool) ¹		
DNA quality	GQN at 30 kb>5	GQN at 30 kb>5		
Mean target coverage	>200-fold	>200-fold		
Minimum target coverage	50-fold	50-fold		
Sample multiplexing	48	48		
Library size	4 – 5 kb	4 – 5 kb		
Methylation	Detected	Detected		

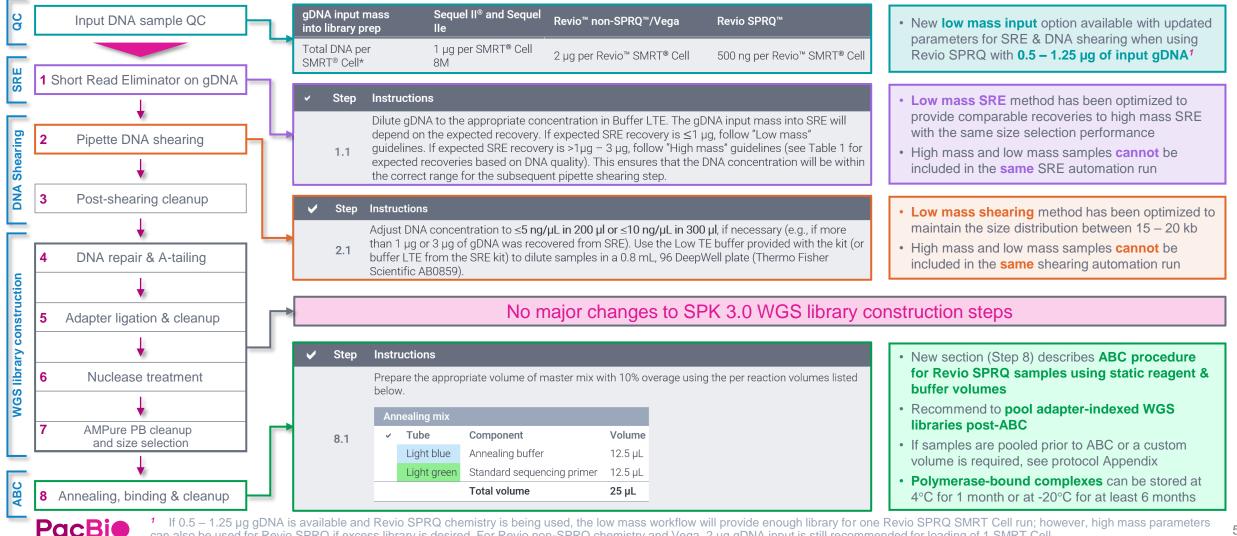
Revio system v13.3 HiFi library preparation protocol key updates

Sequencing method	Protocol or Guide ¹	Input sample QC ²	Short read eliminator	DNA shearing	Library construction	ABC ³
	Preparing whole genome and metagenome libraries using SPK 3.0 [<u>102-166-600]</u>	Low mass input option	Low mass SRE option	Low mass shearing option	No major changes	New ABC section
	Short Read Eliminator (SRE), DNA shearing, and cleanup for the Hamilton Microlab Prep system [103-424-100]		Low mass SRE option	Low mass shearing option	—	_
Whole genome	Preparing whole genome libraries using the HiFi prep kit 96 [103-420-700]	Low mass input option	Low mass SRE option	Low mass shearing option	No major changes	Updated ABC section
sequencing	Automated HiFi prep 96 and HiFi ABC for the Hamilton NGS STAR MOA system [103-425-700]	Low mass input option	Low mass SRE option	Low mass shearing option	No major changes	Updated ABC section
	Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800]	No major changes	—	No major changes	Updated post-nuclease cleanup pooling options	New ABC section
	Automated HiFi plex prep 96 for the Hamilton NGS STAR MOA system [103-425-800]	No major changes	—	No major changes	Updated post-nuclease cleanup pooling options	New ABC section
RNA	Preparing Kinnex libraries using Kinnex single-cell RNA kit [103-254-300]	No major changes	—	—	No major changes	New ABC section
sequencing	Preparing Kinnex libraries using Kinnex full-length RNA kit [103-238-700]	No major changes	—	—	Updated post-nuclease cleanup elution volume	New ABC section
	Preparing multiplexed amplicon libraries using SMRTbell prep kit 3.0 [102-359-000]	No major changes	—	—	Added table for [DNA] normalization before ABC	New ABC section
Targeted sequencing	Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800]	No major changes	—	No major changes	Updated post-nuclease cleanup pooling options	New ABC section
	Generating PureTarget repeat expansion panel libraries [<u>103-329-400]</u>	Added table to clarify input req.	—	—	No major changes	Updated ABC section
Viral sequencing	Preparing multiplexed AAV SMRTbell libraries using SPK 3.0 [102-126-400]	No major changes	—	—	No major changes	New ABC section
	Preparing whole genome and metagenome libraries using SPK 3.0 [<u>102-166-600</u>]	Low mass input option	Low mass SRE option	Low mass shearing option	No major changes	New ABC section
Metagenomics	Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800]	No major changes	—	No major changes	Updated post-nuclease cleanup pooling options	New ABC section
	Preparing Kinnex libraries from 16s rRNA amplicons [<u>103-238-800]</u>	No major changes	_	_	Updated post-nuclease cleanup elution volume	New ABC section

PacBi

¹ Refer to PacBio <u>Documentation</u> website for the most up-to-date versions of Procedure & checklist and Guide & overview SMRTbell library preparation documentation.

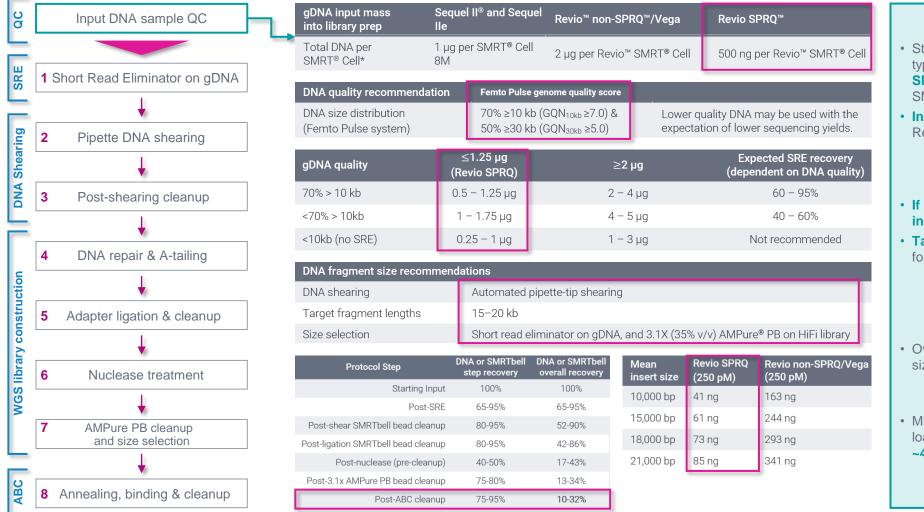
² Recommended QC methods and tools to evaluate input gDNA sample quality remain the same for all protocols – but some protocols have updated minimum input gDNA mass requirements.


³ ABC = Annealing / binding / cleanup step to prepare purified, primer-annealed and polymerase-bound SMRTbell libraries for sequencing on PacBio long-read systems.

51

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]



can also be used for Revio SPRQ if excess library is desired. For Revio non-SPRQ chemistry and Vega, 2 µg gDNA input is still recommended for loading of 1 SMRT Cell.

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]

PacBi

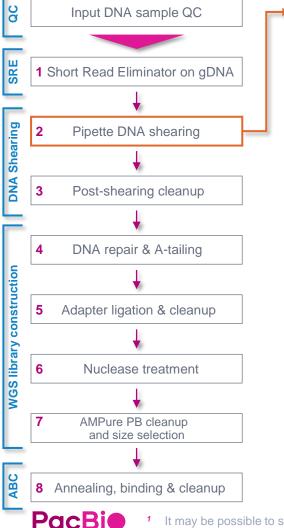
Input DNA sample QC notes

- Starting with 500 ng and 2 µg of genomic DNA will typically provide enough library to load at least 1 Revio SPRQ SMRT Cell and 1 Revio non-SPRQ/Vega SMRT Cell, respectively¹
- Input DNA QC recommendations are the same for Revio SPRQ & non-SPRQ libraries
 - ≥70% of starting input gDNA should be ≥10 kb (GQN_{10kb} ≥ 7.0. If GQN_{10kb} <7.0, higher gDNA inputs may be required
- If starting with lower quality gDNA, using a higher input amount >500 ng is recommended
- Target DNA fragment size (15 20 kb) is the same for Revio SPRQ & non-SPRQ libraries
 - Shearing may be bypassed if sample is already in the appropriate size-range
 - If majority of DNA is <10 kb, SRE is not recommended
- Overall recovery is dependent on gDNA quality and size
 - Overall recovery from input gDNA to post-ABC cleanup ranges between ~10 – 32%
- Min. polymerase-bound library mass necessary for loading 1 Revio SPRQ SMRT Cell (250 pM) ranges
 ~41 ng to 85 ng depending on insert size

If 0.5 – 1.25 μg gDNA is available and Revio SPRQ chemistry is being used, the low mass workflow will provide enough library for one Revio SPRQ SMRT Cell run; however, high mass parameters can also be used for Revio SPRQ if excess library is desired. For Revio non-SPRQ chemistry and Vega system libraries, 2 μg gDNA input is still recommended for loading of 1 SMRT Cell.

54

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit


Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]

Sc	Input DNA sample QC	🔶 🖌 Step	Instructions	Short read eliminator (SRE) notes
SRE	1 Short Read Eliminator on gDNA		Dilute gDNA to the appropriate concentration in Buffer LTE. The gDNA input mass into SRE will depend on the expected recovery. If expected SRE recovery is $\leq 1 \mu g$, follow "Low mass" guidelines. If expected SRE recovery is $>1\mu g - 3 \mu g$, follow "High mass" guidelines (see Table 1 for expected recoveries based on DNA quality). This ensures that the DNA concentration will be within the correct range for the subsequent pipette shearing step.	 New low mass option available with updated parameters for SRE when using Revio SPRQ with 0.5 – 1.25 µg of input gDNA Low mass SRE is optimized to provide comparable recoveries to high mass SRE with the same size
ing	2 Pipette DNA shearing	1.1	Sample volume 25 μL 50 μL DNA concentration 20-50 ng/μL 40-80 ng/μL	selection performance
DNA Shearing	3 Post-shearing cleanup		Recommended max gDNA mass 1.25 µg* 4 µg** Elution volume (Buffer LTE) 200 µl 300 µl Shearing mass limit ≤1 µg ≤3 µg	 Recommend to stay consistent for both SRE and shearing steps (i.e., use low or high mass settings for both SRE and shearing)
F			*Max gDNA input mass is 1.75 µg for low quality gDNA with a GQN10kb <7.0. See Table 1. ** Max gDNA input mass is 5 µg for low quality gDNA with a GQN10kb <7.0. See Table 1.	Note: Both high mass and low mass samples cannot be included in the same SRE automation run
construction	4 DNA repair & A-tailing ↓	1.2	Add Buffer SRE to each sample.	 Important: Use SRE on genomic DNA only. Attempting to use SRE on sheared DNA or HiFi libraries will result in poor recoveries If automating this step, refer to <i>Microlab Prep system</i>
/ const	5 Adapter ligation & cleanup		If working in a plate format, heat seal with foil. Vortex/shake to mix for 5 seconds at max speed.	Guide & overview (<u>103-424-100</u>) for details on consumables
S librar	6 Nuclease treatment		Carefully remove supernatant without disturbing the pellet.	Recommend to proceed to DNA shearing within 2 weeks of performing SRE
8 Ø	•	1.6	 Leaving up to 5 µl and 10 µl supernatant with the low and high mass SRE workflow, respectively, is acceptable to ensure the pellet is not aspirated. 	 If not performing SRE, proceed directly to the DNA shearing step
ABC	 7 AMPure PB cleanup and size selection 8 Annealing, binding & cleanup 	1.7	Add Buffer LTE to the tube and incubate at room temperature for 10 minutes. Low mass High mass Buffer LTE 200 µL	
	PacBi			5

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]

Step Instructions

Adjust DNA concentration to ≤5 ng/µL in 200 µl or ≤10 ng/µL in 300 µl, if necessary (e.g., if more than 1 µg or 3 µg of gDNA was recovered from SRE). Use the Low TE buffer provided with the kit (or buffer LTE from the SRE kit) to dilute samples in a 0.8 mL, 96 DeepWell plate (Thermo Fisher Scientific AB0859).

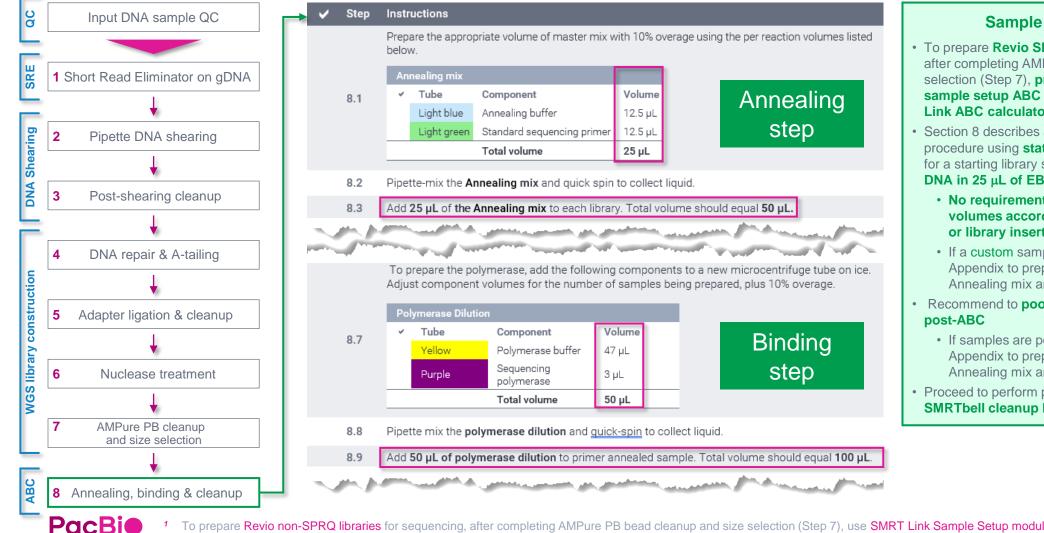
Parameters for shearing on the Microlab Prep, or Hamilton assay-ready workstations are listed below. These parameters should already be part of the installed method on the instrument.

	Parameter	Low mass	High mass
	DNA concentration	≤5 ng/µL	≤10 ng/µL
2.2	Volume of Buffer LTE	200 µL	300 µL
	Number of mixes	300 cycles	300 cycles
	Pipette mixing speed	400 µL/sec	500 µL/sec
	Liquid following	83% volume	83% volume
	Pipette tip	300 µL CO-RE II tips (filtered, black, non-sterile)	300 µL CO-RE II tips (filtered, black, non- sterile)

2.3 Place the plate on the appropriate work deck position and start the shearing procedure.

Optional: measure DNA concentration with a Qubit fluorometer using the 1x dsDNA HS kit once the shearing procedure is complete.

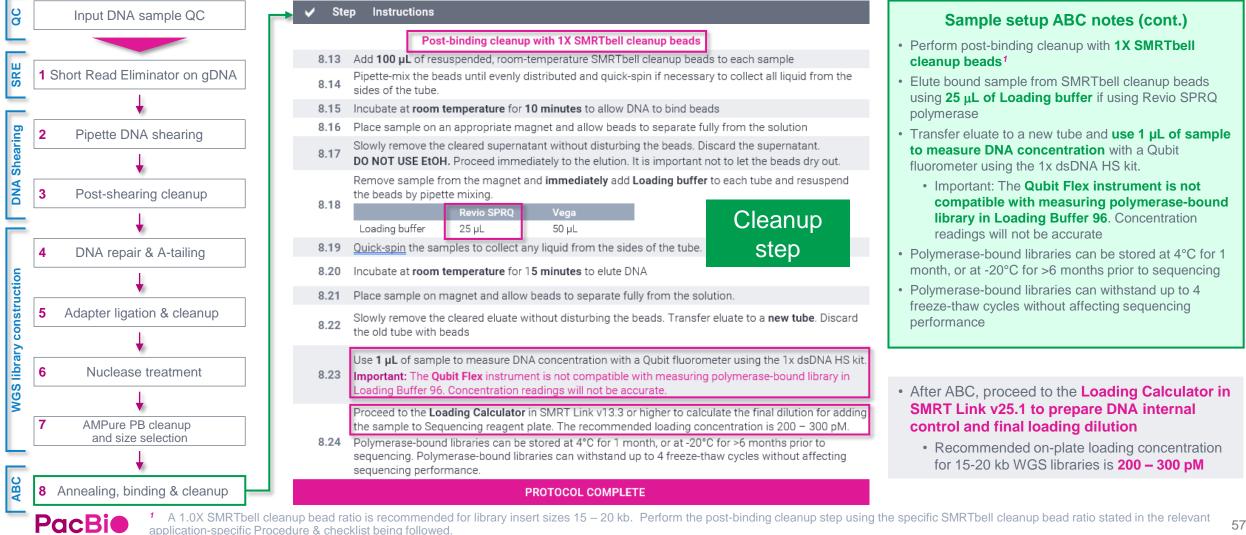
- 2.4 Recommended: Further dilute each aliquot to 250 pg/μL with the Femto Pulse dilution buffer. Measure the DNA with a Femto Pulse system to ensure efficient shearing.
- 2.5 Proceed to the next step of the protocol.


DNA shearing notes

- New low mass option available with updated parameters for DNA shearing when using Revio SPRQ with 0.5 – 1.25 µg of input gDNA
- Low mass shearing settings are optimized to maintain the size distribution between 15 – 20 kb, which is this recommended target fragment size range for this WGS protocol
- Section 2 of protocol describes the procedure for DNA shearing with the Hamilton Microlab Prep or Hamilton assay ready workstations (NGS STAR MOA, STARlet, and STAR V).¹
- See protocol Appendix for instructions on shearing with the **Megaruptor 3 system**
- Deviating from the stated concentration and automation settings is not recommended and will result in under-sheared DNA
- Sheared DNA fragment size distribution should ideally be narrow and generally between 10 to 30 kb
- If input gDNA is already within these ranges or lower, DNA shearing step can be bypassed

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]


Sample setup ABC notes

- To prepare Revio SPRQ libraries for sequencing, after completing AMPure PB bead cleanup and size selection (Step 7), proceed to Step 8 in protocol for sample setup ABC instructions¹ (do not use SMRT Link ABC calculator tool)
- Section 8 describes annealing, binding & cleanup procedure using static reagent and buffer volumes for a starting library sample that contains <60 ng/µL of DNA in 25 µL of EB
 - No requirement to adjust reagent and buffer volumes according library DNA concentration or library insert size
 - If a custom sample volume is used, see protocol Appendix to prepare required amounts of Annealing mix and polymerase dilution
- Recommend to pool adapter-indexed WGS libraries
 - If samples are pooled prior to ABC see protocol Appendix to prepare required amounts of Annealing mix and polymerase dilution
- Proceed to perform post-binding cleanup with 1X SMRTbell cleanup beads

SPK 3.0 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 [102-166-600 Rev 05]

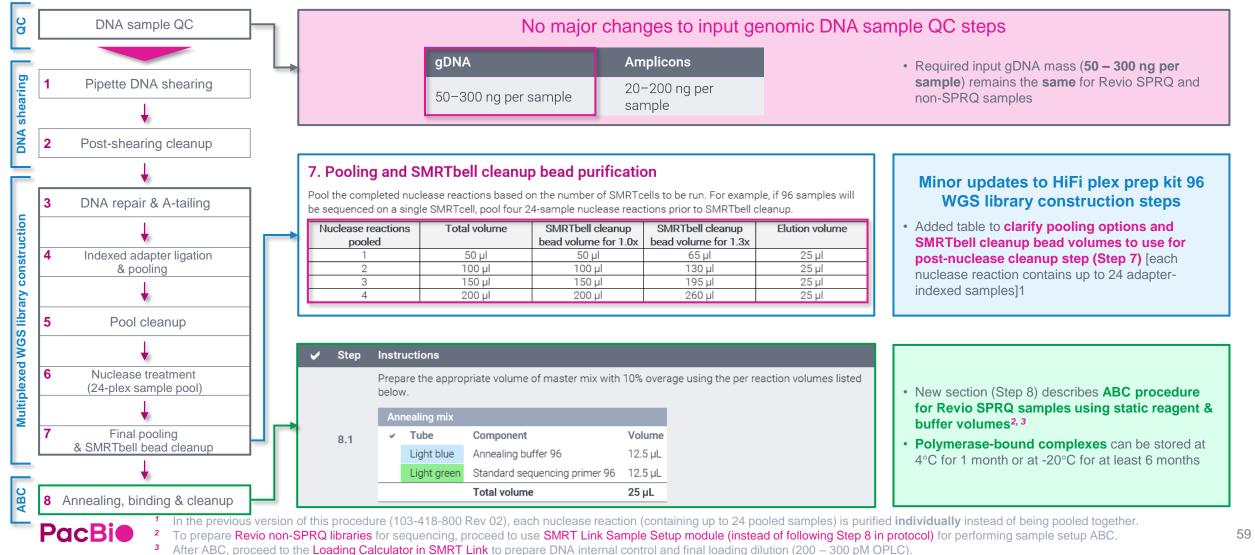
Revio system v13.3 HiFi prep kit 96 WGS protocol updates

HiFi prep kit 96 whole genome sequencing protocol supports reduced DNA input requirements for SMRTbell library preparation and include updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing whole genome libraries using the HiFi prep kit 96 [103-420-700 Rev 03]

	gDNA per SMRT® Cell Revio non-SPRQ/Vega: 2 µg Revio SPRQ: 500 ng	parameters for SRE & DNA shearing when using Revio SPRQ with 0.5 – 1.25 µg of input gDNA ¹
 1 Short Read Eliminator on gDNA 2 Pipette DNA shearing Leanup 	✓ Step Instructions for SRE on gDNA Dilute gDNA to the appropriate concentration in Buffer LTE. The gDNA input mass into SRE will depend on the expected recovery. If expected SRE recovery is ≤1 µg, follow "Low mass" guidelines. If expected SRE recovery is >1µg - 3 µg, follow "High mass" guidelines (see Table 1 for expected recoveries based on DNA quality). This ensures that the DNA concentration will be within the correct range for the subsequent pipette shearing step.	
4 DNA repair & A-tailing	 Step Instructions for automated DNA shearing on Hamilton systems 	Low mass shearing method has been optimized
5 Adapter ligation 6 Post-ligation cleanup	 Adjust DNA concentration to ≤5 ng/µL in 200 µl or ≤10 ng/µL in 300 µl, if necessary (e.g., if more than 1 µg or 3 µg of gDNA was recovered from SRE). Use the Low TE buffer provided with the kit (c buffer LTE from the SRE kit) to dilute samples in a 0.8 mL, 96 DeepWell plate (Thermo Fisher Scientific AB0859). 	maintain the size distribution between 15 – 20 kb
- · · · · · · · · · · · · · · · · · · ·	No major changes to HiFi prep kit 96 WGS libra	ary construction steps
7 Nuclease treatment		
 Nuclease treatment 8 AMPure PB cleanup & size selection 	 Step Instructions Prepare the appropriate volume of master mix with 10% overage using the per reaction volumes listed below. 	 Updated section (Step 9) describes ABC procedure for Revio SPRQ and non-SPRQ samples using static reagent & buffer volumes
AMPure PB cleanup & size selection	Prepare the appropriate volume of master mix with 10% overage using the per reaction volumes listed below. Annealing mix	 procedure for Revio SPRQ and non-SPRQ samples using static reagent & buffer volume Recommend to pool adapter-indexed WGS
8 AMPure PB cleanup	Prepare the appropriate volume of master mix with 10% overage using the per reaction volumes listed below.	procedure for Revio SPRQ <u>and</u> non-SPRQ samples using static reagent & buffer volume

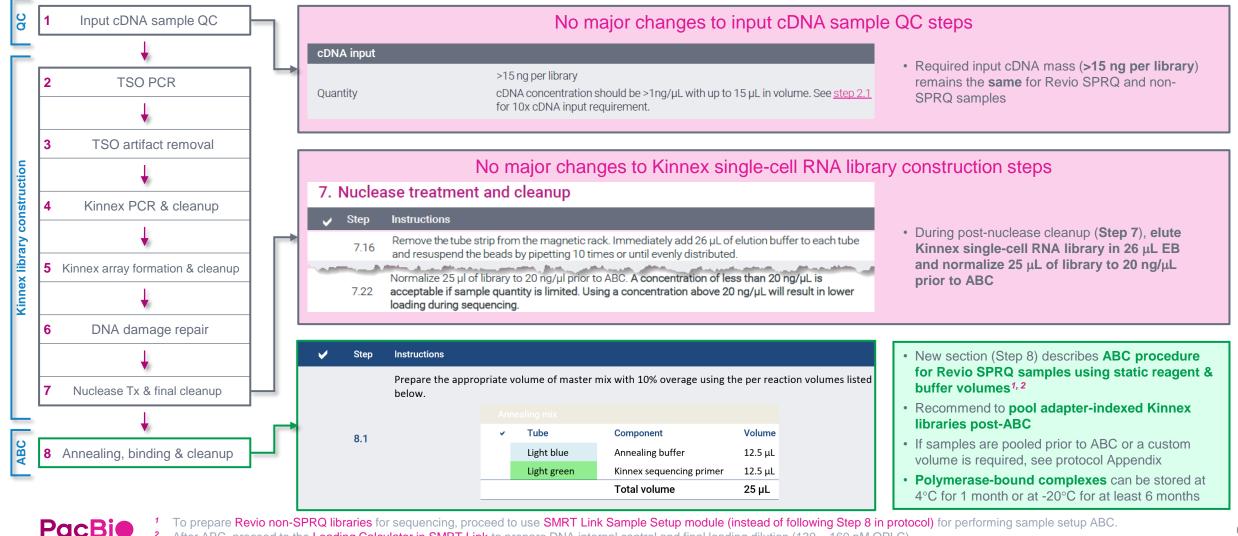
² After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (200 – 300 pM OPLC).


58

Revio system v13.3 HiFi plex prep kit 96 WGS protocol updates

HiFi plex prep kit 96 multiplexed whole genome sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

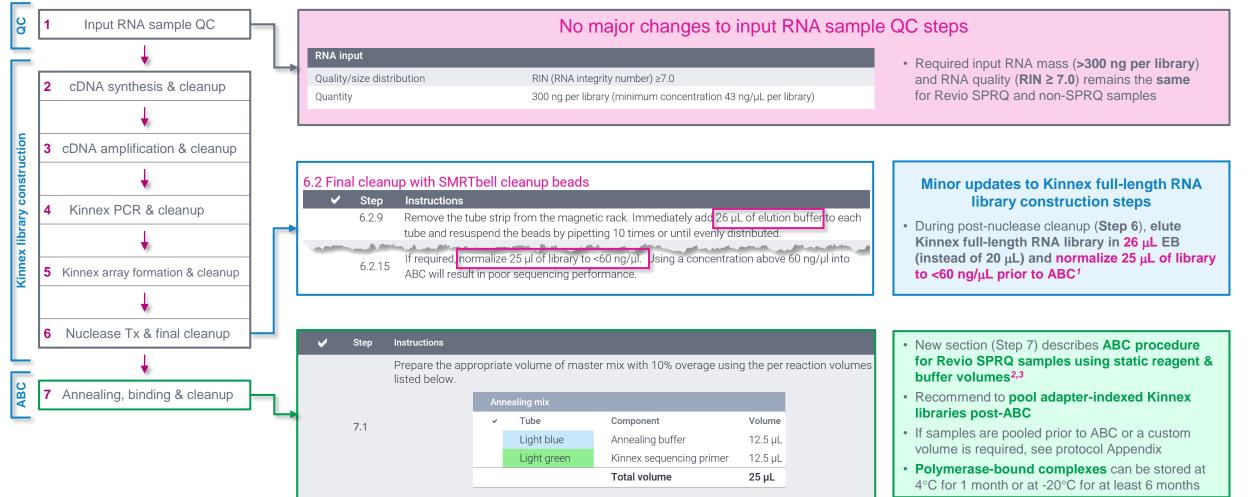
Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800 Rev 03]



Revio system v13.3 Kinnex single-cell RNA sequencing protocol updates

Kinnex single-cell RNA sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing Kinnex libraries using Kinnex single-cell RNA kit [103-254-300 Rev 06]


To prepare Revio non-SPRQ libraries for sequencing, proceed to use SMRT Link Sample Setup module (instead of following Step 8 in protocol) for performing sample setup ABC. After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (130 - 160 pM OPLC).

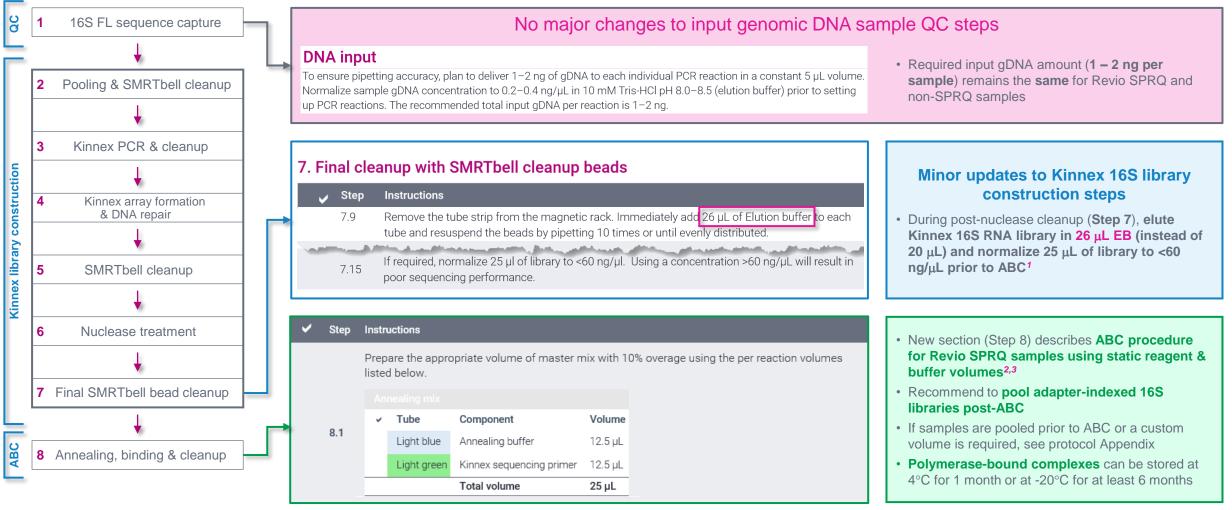
Revio system v13.3 Kinnex full-length RNA sequencing protocol updates

Kinnex full-length RNA sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing Kinnex libraries using Kinnex full-length RNA kit [103-254-300 Rev 06]

¹ In the previous version of this procedure (103-254-300 Rev 05), Kinnex full-length RNA library is eluted in in 20 μL EB and the DNA concentration must be less than 60 ng/μL to go into ABC.

PacBie ² To prepare Revio non-SPRQ libraries for sequencing, proceed to use SMRT Link Sample Setup module (instead of following Step 7 in protocol) for performing sample setup ABC.


³ After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (130 – 160 pM OPLC).

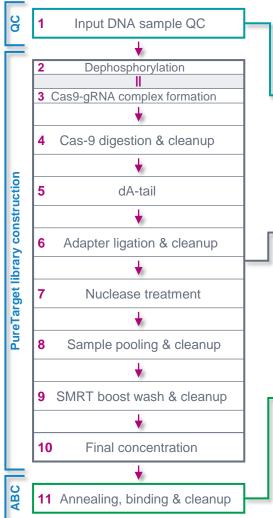
Revio system v13.3 Kinnex 16S sequencing protocol updates

Kinnex 16S sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing Kinnex libraries from 16S rRNA amplicons [103-238-800 Rev 04]

¹ In the previous version of this procedure (103-238-800 Rev 03), Kinnex 16S RNA library is eluted in in 20 μL EB and the DNA concentration must be less than 60 ng/μL to go into ABC.

PacBio ² To prepare Revio non-SPRQ libraries for sequencing, proceed to use SMRT Link Sample Setup module (instead of following Step 7 in protocol) for performing sample setup ABC.


³ After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (130 – 160 pM OPLC).

Revio system v13.3 PureTarget sequencing protocol updates

PureTarget sequencing protocol supports reduced DNA input requirements for PureTarget library preparation and includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Generating PureTarget repeat expansion panel libraries [103-329-400 Rev 03]

PacBi

The recommended mass of gDNA is **2 \mug per sample** to ensure there are sufficient gene copies to load and maximize sequencing coverage. This protocol is suitable for 1–4 μ g per sample. We recommend a minimum total DNA of 16 μ g on the Sequel, Vega and Revio systems to yield a measurable library mass, and a maximum total DNA of 75 μ g on the Sequel system, 100 μ g on the Vega and non-SPRQ Revio system, and 50 μ g on the Revio-SPRQ system, across all multiplexed samples.

Min gDNA input	Max gDNA input
16 µg	75 µg
16 µg	100 µg
16 µg	100 µg
16 µg	50 µg
	16 µg 16 µg 16 µg

- Added table to clarify per-SMRT Cell genomic DNA input requirements for each sequencing system¹
 - Recommend min. total input gDNA = 16 µg per Revio SMRT Cell (across all multiplexed samples) to yield measurable library mass
 - Recommend max. total input gDNA = 50 µg for Revio-SPRQ chemistry (across all multiplexed samples)
- Protocol supports **1–4 µg** input gDNA per sample

No major changes to PureTarget library construction steps

Step Instructions

Incuba

11a.1

Note: Always use these values for each pooled preparation. Do not adjust based on measured concentration, value, or plex level.

Annealing sequencing primer

Combine the following components in a new low-binding tube and pipette to mix.

		Preparation A	Preparation B
	# of samples in preparation	8 or 16 or 24	8 or 16 or 24
	Sample (SMRTbell templates)	15 µL	15 µL
	Annealing buffer	7.5 µL	7.5 µL
	Sequencing primer	7.5 µL	7.5 µL
	Total Volume	30 µL	30 µL
e at rooi	m temperature for 15 minutes ther	n proceed to the	next step.

- Updated section (Step 11) to include ABC procedure and final loading dilution procedure for Revio SPRQ chemistry
- **Polymerase-bound complexes** can be stored at 4°C for 1 month or at -20°C for at least 6 months

Example input gDNA use cases for PureTarget: If user wants to run an 8-plex with Revio SPRQ chemistry, then min. input gDNA mass per sample is 2 μg (but using 2-4 μg per sample is still acceptable. If user wants to run a 48-plex with Revio SPRQ chemistry, then max. input gDNA mass per sample is 1 μg (since max. total input gDNA per Revio SPRQ SMRT Cell is 50 μg).

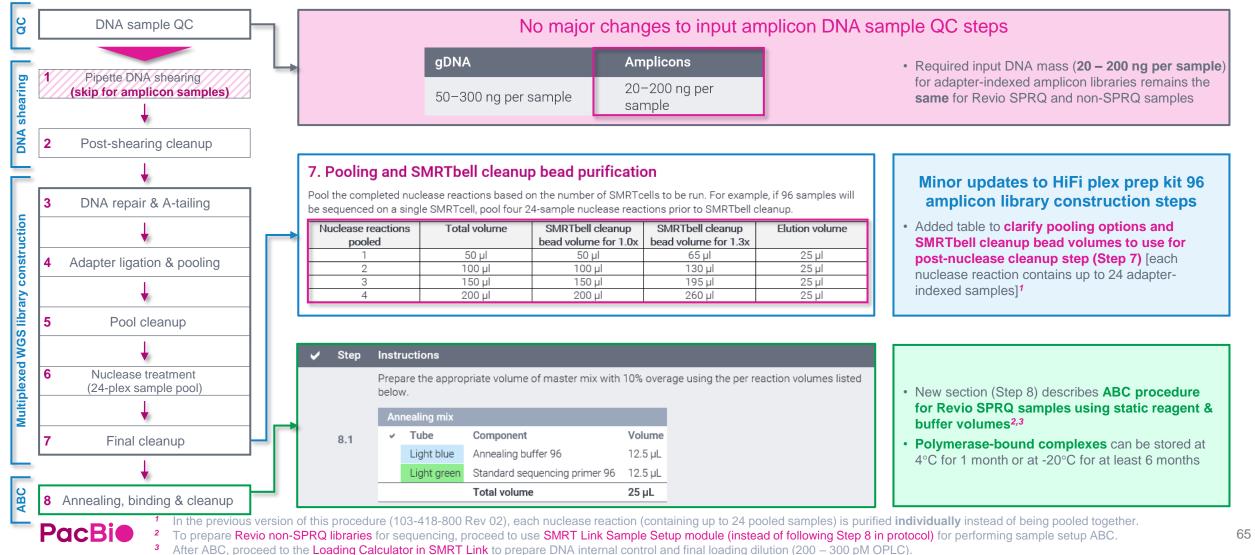
Revio system v13.3 SMRTbell prep kit 3.0 amplicon seq. protocol updates

SPK 3.0 multiplexed amplicon sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing multiplexed amplicon libraries using SMRTbell prep kit 3.0 [102-359-000 Rev 04]

1 Input DNA sample	QC			No majo	or changes t	o input ar	mplicon DNA s	ampl	le QC steps
↓ 2 DNA repair & A-ta	ing	PCR-indexed amplicon samples	<3 kb	Aniinimum pooled amount per Revio SMRT Cell 300 ng 500 ng 750 ng	Adapter-indexed amplicon samples	Mean size <3 kb 3-12 kb >12 kb	Minimum <u>per sample</u> amount per Revio SMRT Cell 300 ng 500 ng 750 ng		Input DNA mass requirements for amplicon libraries remains the same for Revio SPRQ and non-SPRQ samples
 3 Adapter ligation & cl 4 Nuclease treatment & cl 4 Nuclease treatment & cl 5 Pooling & concentration (For adapter-indexed and (For adapter-indexed and (For adapter)) 6 Annealing, binding & cl 	leanup ion plicons)	✓ Step I 5.11 F 1 1 1	nstructions emove the tube fro esuspend the bead necessary, dilute		nediately ad <mark>d 26 µL</mark> of until evenly distributed ary to the concentra the appropriate con	elution buffer to I. tions indicated	each tube and below. Failure to	0	 Minor updates to SMRTbell prep kit 3.0 amplicon library construction steps During pooling & concentration of adapter-indexed amplicon samples (Step 5), elute pooled library in 26 μL EB (instead of 15 μL)¹ Added table to clarify recommendations for normalizing DNA concentrations prior to ABC depending on insert size range
		F	nstructions Prepare the appropelow. Annealing mix Tube Light blue Light green	oriate volume of master i Component Annealing buffer 96 Standard sequencing pr Total volume	Volume 12.5 µL	e using the per re	eaction volumes listed	•	New section (Step 6) describes ABC procedure for Revio SPRQ samples using static reagent & buffer volumes ^{2, 3} Recommend to pool adapter-indexed HiFi libraries post-ABC If samples are pooled prior to ABC or a custom volume is required, see protocol Appendix Polymerase-bound complexes can be stored at 4°C for 1 month or at -20°C for at least 6 months

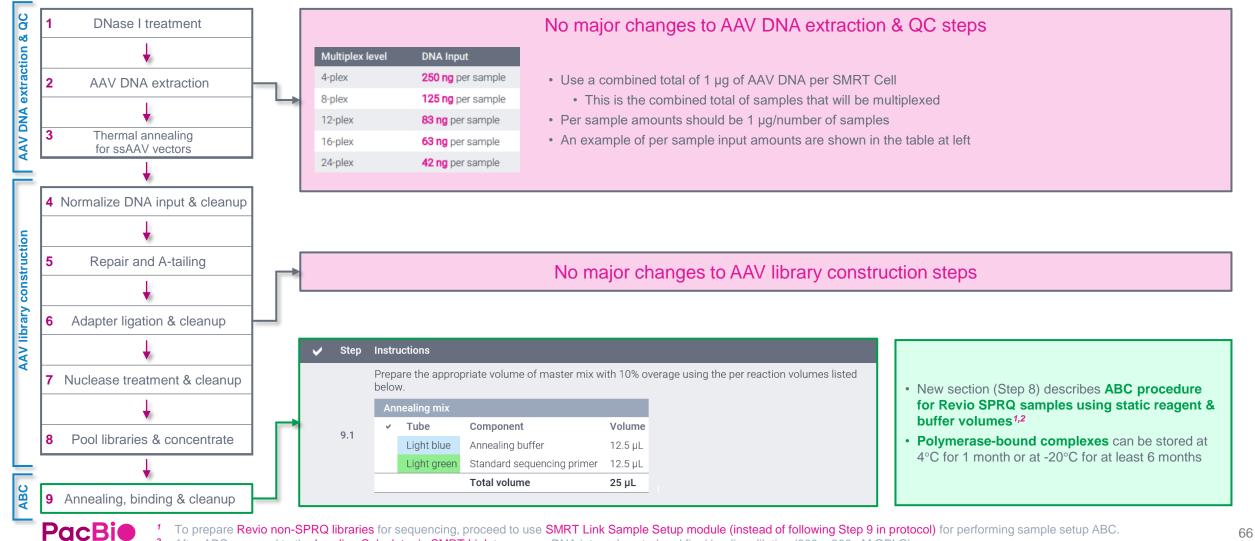
Pacebio ¹ In the previous version of this procedure (1102-359-000 Rev 03), pooled library is eluted in in 15 µL EB and the DNA concentration must be less than 60 ng/µL to go into ABC. ² To prepare Revio non-SPRQ libraries for sequencing, proceed to use SMRT Link Sample Setup module (instead of following Step 6 in protocol) for performing sample setup ABC.


³ After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (200 – 300 pM OPLC).

Revio system v13.3 HiFi plex prep kit 96 amplicon seq. protocol updates

HiFi plex prep kit 96 multiplexed amplicon sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing multiplexed whole genome and amplicon libraries using the HiFi plex prep kit 96 [103-418-800 Rev 03]


Revio system v13.3 AAV sequencing protocol updates

Adeno-associated virus (AAV) sequencing protocol includes updated sample setup (ABC) guidance for Revio SPRQ polymerase kit

Preparing multiplexed AAV SMRTbell libraries using SMRTbell prep kit 3.0 [102-126-400 Rev 04]

After ABC, proceed to the Loading Calculator in SMRT Link to prepare DNA internal control and final loading dilution (200 - 300 pM OPLC).

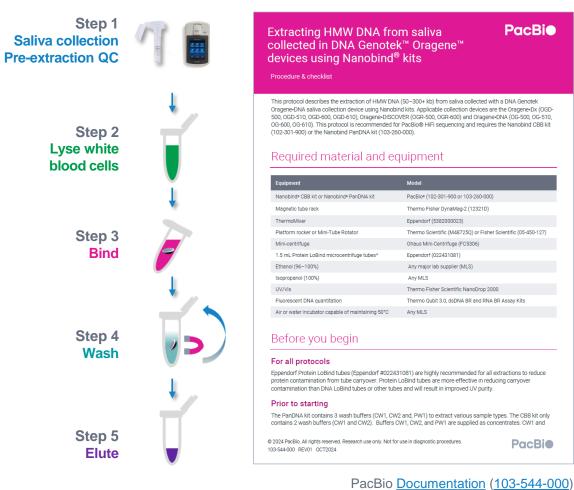
Nanobind HMW DNA extraction procedure for saliva samples

Procedure & checklist – Extracting HMW DNA from saliva using Nanobind kits (103-544-000)

Procedure & checklist describes the extraction of HMW DNA (50 – 300+ kb) from saliva collected with a Genotek Oragene DNA saliva collector (e.g., OG-500 or OG-600) using Nanobind kits.

- Use 500 µL of input saliva collected and stabilized in a Oragene device (DNA Genotek)
- Perform pre-extraction QC using Qubit BR assay to verify saliva sample contains >2 μ g of DNA in 500 μ L for efficient extraction using Nanobind kits¹
- Saliva collected in Oragene devices is stable at RT for up to 5 years (see DNA Genotek white paper)
- DNA yield for saliva samples extracted using Nanobind kits can vary from ~1 to • ~45 µg depending on the donor

Collect saliva sample using Oragene device following DNA Genotek instructions


PacBi

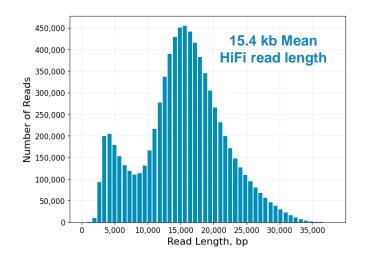
Use 500 µL input saliva stabilized in Oragene device buffer Verify input DNA >2 μ g in 500 μ L saliva sample using Qubit BR assay¹

Perform saliva HMW **DNA** extraction using Nanobind PanDNA kit or Nanobind CBB kit

PacBi

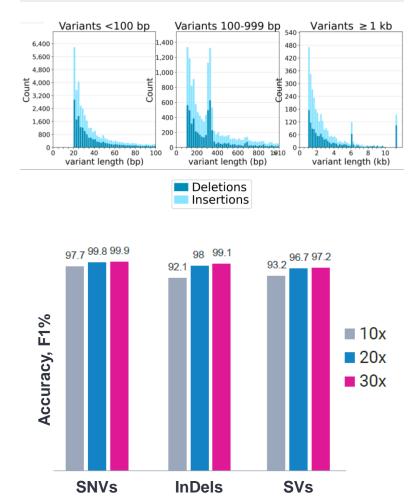
PacBi

PacBi


Revio system v13.3 example sequencing performance

Revio SPRQ whole genome sequencing performance

Example human WGS variant & methylation calling performance data for HG002 using 500 ng of input DNA


Sequencing metrics

HiFi Reads	8.4 M
HiFi Base Yield	119.7 Gb
Mean HiFi Read Length	15.4 kb
Median HiFi Read Quality	Q33
HiFi Read Mean # of Passes	10

For human HG002 WGS libraries run with Revio SPRQ chemistry, per-SMRT Cell HiFi read counts were typically >7 Million depending on final library insert size and P1 loading¹

Variant calling performance²

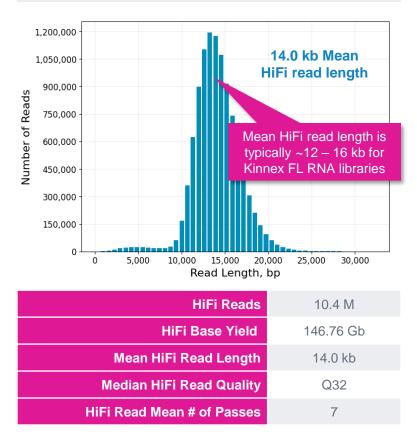
Methylation calling performance

Modificati '	Notif ม⊺	Scored sites 1	Modified sites (Pr > 0.5)
5mC	CpG	97.5%	62.3%
6mA	А	7.0%	7.0%
5mC	at CpG		6mA
8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 probability of 5mC	6 8 5 8 9 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4 0.6 0.8 1 edicted probability of 6mA
	5mC (CpG)		naya Niya nya ana nya nya nya
	000/		THE REPORT OF A DESCRIPTION OF A DESCRIP
Sensitivity	93%		

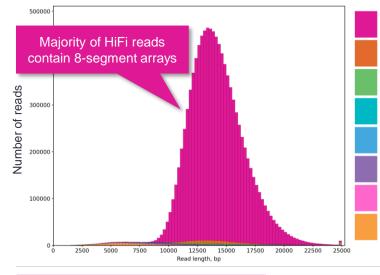
5mC data show a strongly bimodal profile indicating increased confidence of true positive and true negative 5mC calls Revio on-instrument calling has high accuracy for 6mA, equivalent to Fibertools for Fiber-seq assays.³

Example sequencing metrics shown for human HG002 sample that was loaded at 300 pM OPLC and achieved P1 = 69% using 500 ng of input gDNA. **PacBi**

F1% accuracy score data shown are for a single Revio SMRT Cell for HG002/GM24385 sequenced with Revio SPRQ chemistry.

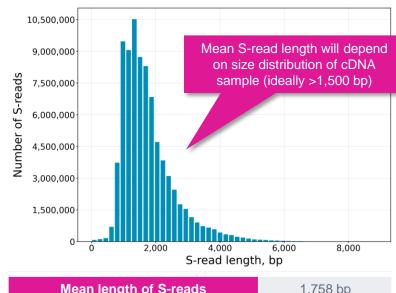

3 Revio on-instrument 6mA caller has > 90% sensitivity for 6mA in Fiber-seq and < 5 false positive calls per 1,000 A bases in reads.

Revio SPRQ RNA sequencing performance



Example Kinnex full-length RNA sequencing performance for Universal Human Reference RNA sample (6-plex)

Sequencing metrics



Read segmentation

Input HiFi Reads	10,448,251
Percent of reads with full arrays	94.93%
Mean array size (concentration factor)	7.79

Length of S-reads

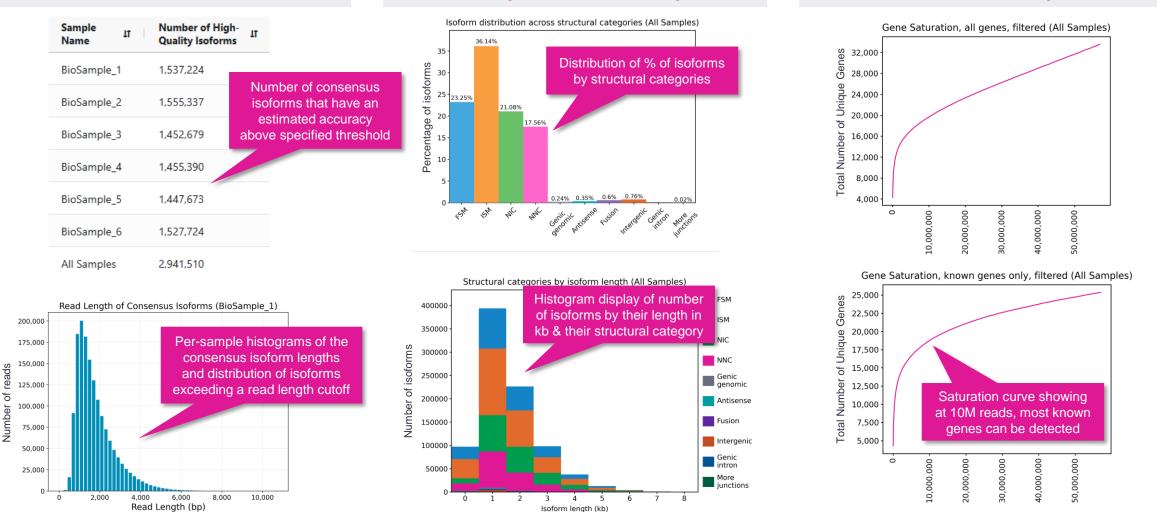
Mean length of S-reads	1,758 bp
Segmented reads (S-reads)	81,377,012

For UHRR Kinnex full-length RNA libraries, per-Revio SMRT Cell HiFi read counts were typically >7 Million depending on final library insert size and *P1* loading.¹

PacBi

Histogram distribution of number of HiFi reads by read length, in bp. For UHRR Kinnex libraries, % of reads with full arrays is ideally >80% and mean array size is ideally >7.0 segments. Histogram distribution of the number of S-reads by HiFi read length, in base pairs. Mean S-read length will depend on size distribution of cDNA sample (ideally >1,500 bp).

Revio SPRQ RNA sequencing performance

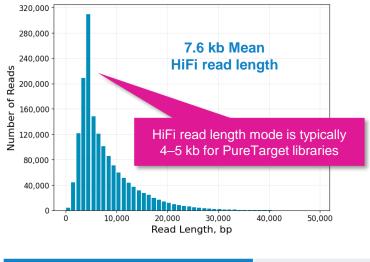


Gene saturation plots¹

Example Kinnex full-length RNA sequencing performance for Universal Human Reference RNA sample (6-plex)

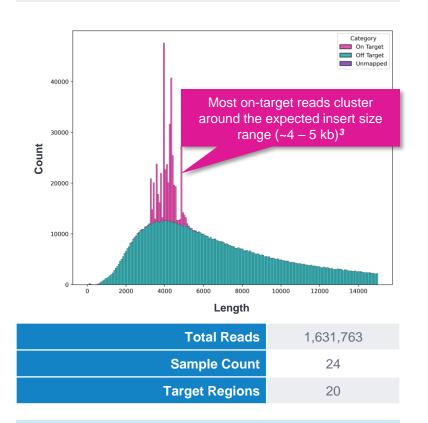
Transcript classification plots

Transcript clustering summary metrics


Pace A function of the second second

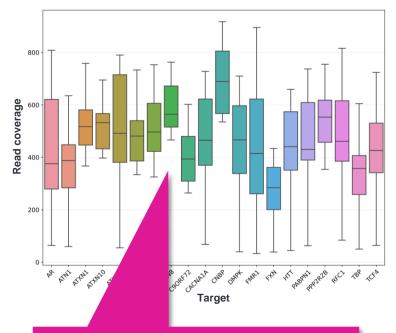
Revio SPRQ targeted sequencing performance

PureTarget[™]


Example PureTarget sequencing performance for Coriell Institute human gDNA sample (24-plex)

Sequencing metrics

HiFi Reads	1.6 M
HiFi Base Yield	12.2 Gb
Mean HiFi Read Length	7.6 kb
Median HiFi Read Quality	Q39
HiFi Read Mean # of Passes	22


For 24-plex repeat expansion panel libraries,¹ per-Revio SMRT Cell HiFi read counts were typically >1 Million depending on final library insert size and P1 loading²

Read categories

Histogram mapping the length of On target, Off target, and Unmapped reads in the sample

Target coverage

Mean on-target coverage for each target region is >200-fold (averaged across all samples analyzed)²

Box plot for each target region of mean coverage across all samples analyzed \rightarrow Can quickly compare coverage across all target regions and identify targets with low/high coverage

¹ For PureTarget library construction, 1000 ng of input gDNA was used per sample (except for two samples that used 320 ng each)

PacBi

Example sequencing metrics shown for Coriell Institute human samples that achieved P1 = 31%. Note: When evaluating PureTarget runs, it is useful to examine the secondary analysis results (e.g., on-target coverage) since primary sequencing metrics like P1 (%) are mostly dominated by 'background' non-targeted reads..

³ PureTarget library inserts with expanded alleles may generate on-target reads longer than \sim 4 – 5 kb.

Revio system v13.3 with SPRQ chemistry example datasets

Example Revio SPRQ datasets are available for WGS, PureTarget and Kinnex full-length RNA

Application	Dataset	Data type	PacBio system
Whole genome sequencing			
Variant detection, assembly, epigenetics	Homo sapiens - GIAB trio HG002-4	HiFi long read	Revio system – SPRQ chemistry
Tumor/normal	COLO829 melanoma	HiFi long read	Revio system – SPRQ chemistry
Whole genome sequencing - Fiber-Seq chromatin assay	Homo sapiens - HG002	HiFi long read	Revio system – SPRQ chemistry
Targeted sequencing			
PureTarget	Repeat expansion panel - Coriell samples	HiFi long read	Revio system – SPRQ chemistry
RNA sequencing			
Kinnex full-length RNA	Homo sapiens - UHRR	HiFi long read	Revio system – SPRQ chemistry

PacBi

Revio system v13.3 summary

Revio system v13.3 + SPRQ chemistry key benefits summary

Revio system with SPRQ chemistry reduces sequencing costs and enables more sample types & capabilities

4× lower DNA input

500 ng DNA input per Revio SMRT Cell

Compatible with existing library prep workflows

 \rightarrow Unlock more sample types (e.g., tumor, saliva, small plant/animal, etc.)

33% increased HiFi yield

120 Gb per Revio SMRT Cell Two 20× human genomes per Revio SMRT Cell \rightarrow 2,500 HiFi genomes per year

Expanded epigenetics capabilities

10% increase in 5mC calling accuracy

On-instrument 6mA caller compatible with Fiber-seq assays

 \rightarrow More accurate & streamlined multi-omics studies

Revio v13.3 with SPRQ chemistry extends the core capabilities of the Revio system

Revio system v13.3 specifications

Library	Run time ¹	Q30+ bases	HiFi yield per SMRT Cell ²	Methylation
1–5 kb	12 hours	95%	6 – 8 Million reads	
5–10 kb			35 – 70 Gb	
10–15 kb	24 hours	90%	70 – 100 Gb	5mC at CpG sites and 6mA for native DNA
15–20 kb			100 – 120 Gb	
20–25 kb	30 hours	85%	100 – 120 Gb	

¹ Run time refers to the data collection step, which determines the time between processing SMRT Cells.

² HiFi yield is dependent on library quality and sequencing preparation procedures. Specified yield is based on high-quality samples prepared following best practices.

Key applications and sample throughput (Revio system v13.3)

Library	Sample	Expected coverage ³	Samples Per Revio SMRT Cell	Samples per year⁴
1–5 kb	Amplicon	50×	>1,000	>2.5M
5–10 kb	PureTarget repeat expansion panel	200×	48	60,000
5–10 kb	Microbial genome	30×	384	480,000
15–20 kb	Human genome	20×	2	2,500
15–20 kb	Human methylation profiling	5×	8	10,000
15–20 kb	Transcriptome with Kinnex full-length RNA kit	10M reads	6	7,500

³ Expected coverages are estimates.

Annual throughput is estimated and based on 2,500 Revio SMRT Cells for 12 hour runs; 1,250 Revio SMRT Cells for 24 hr runs; and 1,050 for 30 hour runs.

See *Revio system specification sheet* (<u>102-326-552</u>) for the latest Revio system performance specifications.

Revio system v13.3 with SPRQ chemistry enables HiFi sequencing at scale

See What can you do with one SMRT Cell (102-326-578)	Vega system	Revio sys SPRQ cl	stem with hemistry
Application		Samples per run	
	1 SMRT Cell	1 SMRT Cell	4 SMRT Cells
Whole genome sequencing			
Human genome (20× coverage)	1	2	8
Human methylation profiling (5× coverage)	4	8	32
De novo assembly (1 Gb genome)	2	4	16
Microbial de novo assembly (1 Gb total sum of genomes)	384	384	1,536
Targeted panels			
Amplicon sequencing	>1,000	>1,000	>1,000
Target enrichment			
20 Mb panel	12	16	64
2 Mb panel	72	96	384
100 kb panel	288	384	1,536
PureTarget repeat expansions panel	48	48	192
RNA sequencing			
Kinnex single-cell RNA sequencing	1 (3,000 – 6,000 cells)	1 (6,000 – 10,000 cells)	4 (6,000 – 10,000 cells)
Kinnex full-length RNA sequencing			
5M reads	6	12	48
10M reads	3	6	24
Microbial			
Shotgun metagenomic profiling	64 communities	128 communities	512 communities
Shotgun metagenomic assembly	8 communities	16 communities	64 communities
Kinnex 16S rRNA	1,024 communities	1,536 communities	6,144 communities

All sample throughputs are estimates for either the Vega system with 1 SMRT Cell or the Revio system using SPRQ chemistry with both 1 or 4 SMRT Cells. Coverage may vary based on sample quality, library quality, and fragment lengths. Currently available SMRTbell® adapter index plates 96A-96D contain a total of 384 SMRTbell barcoded adapters. Microbial de novo assembly assumes microbes with 2 Gb of total genome size at 30x per sample. Single-cell transcriptomics assumes ≥80 million reads per library on the Revio system and ~50-60 million reads per library on the Vega system. Full-length RNA sequencing assumes a total of 60M reads for Revio SPRQ and 30M reads for Vega, regardless of plexity. Amplicon sequencing assumes a 12-hour movie time for 1–5 kb, 24-hour movie time for 5+ kb, and >50× per sample.

PacBi

Technical documentation & applications support resources

Revio system and SMRT Link documentation

Revio system documentation

- Revio system Instrument Control Software release notes (103-593-500)
- Revio system v13.3 operations guide (<u>102-962-600</u>)
- Revio system specifications sheet (<u>102-326-522</u>)

SMRT Link & other data analysis documentation

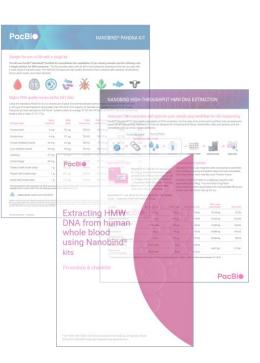
- Application brief SMRT Link (<u>102-326-628</u>)
- Brief primer and lexicon for PacBio SMRT sequencing webpage (<u>v13.1</u>)
- PacBio bioinformatics file formats documentation webpage (v13.1)
- SMRT Link v25.1 release notes (<u>103-592-800</u>)
- SMRT Link v25.1 software installation guide (<u>103-566-000</u>)
- SMRT Link v25.1 user guide (<u>103-566-100</u>)
- SMRT Link v25.1 web services API use cases [Link]
- SMRT Tools v25.1 reference guide [Link]

DNA sample extraction documentation

Brochures

- Brochure Nanobind high-throughput HMW DNA extraction (<u>102-326-565</u>)
- Brochure Nanobind PanDNA kit (<u>102-326-604</u>)

Technical notes


- Technical note High-throughput DNA extraction (<u>102-326-611</u>)
- Technical note Insect DNA extraction (<u>102-326-612</u>)
- Technical note Preparing DNA for PacBio HiFi sequencing Extraction and quality control (102-193-651)
- Technical note Sample preparation for PacBio HiFi sequencing from human whole blood (<u>102-326-500</u>)

Nanobind kit protocols and Guides & overviews

- Guide & overview Nanobind CBB kit (102-572-200)
- Guide & overview Nanobind PanDNA kit (103-394-800)
- Nanobind Procedures & checklists see PacBio <u>Documentation</u>
- Overview Nanobind CBB HMW DNA extraction protocols (<u>103-515-700</u>)
- Overview Nanobind HT HMW DNA extraction robotic procedures (103-032-000)
- Overview Nanobind PanDNA HMW DNA extraction protocols (<u>103-510-000</u>)
- Technical overview HMW DNA sample preparation for PacBio long-read sequencing using Nanobind PanDNA and SRE kits (<u>103-401-100</u>)

Nanobind high-throughput (HT) automation kit protocols and Guides & overviews

- Guide & overview Nanobind HT kits (103-028-100)
- Nanobind HT Procedures & checklists see PacBio Documentation
- Technical overview Automated high-throughput HMW DNA extraction for PacBio long-read sequencing using Nanobind HT kits (<u>103-401-700</u>)

SMRTbell library preparation documentation & other resources

SMRTbell library preparation literature

- Overview HiFi application options (<u>101-851-300</u>)
- Procedure & checklist Generating PureTarget repeat expansion panel libraries (<u>103-329-400</u>)
- Procedure & checklist Preparing Kinnex libraries using Kinnex single-cell RNA kit (<u>103-254-300</u>)
- Procedure & checklist Preparing Kinnex libraries using Kinnex full-length RNA kit (103-238-700)
- Procedure & checklist Preparing Kinnex libraries from 16s rRNA amplicons (<u>103-238-800</u>)
- Procedure & checklist Preparing multiplexed AAV SMRTbell libraries using SMRTbell prep kit 3.0 (<u>102-126-400</u>)
- Procedure & checklist Preparing multiplexed amplicon libraries using PacBio barcoded M13 primers and SMRTbell prep kit 3.0 (<u>101-921-300</u>)
- Procedure & checklist Preparing multiplexed amplicon libraries using SMRTbell prep kit 3.0 (<u>102-359-000</u>)
- Procedure & checklist Preparing whole genome and metagenome sequencing libraries using SMRTbell prep kit 3.0 (<u>102-166-600</u>)

Hybrid capture library preparation literature

Twist protocol – Long read library preparation and standard hyb v2 enrichment (DOC-001320)

Revio system applications support documentation

Application notes & best practices guides

Whole genome sequencing applications

- Application brief Whole genome sequencing for de novo assembly Best Practices (<u>102-193-627</u>)
- Application brief Variant detection using whole genome sequencing with HiFi reads Best Practices (<u>102-193-604</u>)
- Application brief Microbial whole genome sequencing Best Practices (<u>102-193-601</u>)

Viral sequencing applications

- Application brief AAV sequencing Best Practices (<u>102-193-502</u>)
- Application brief Highly-accurate HiFi reads for AAV-research (102-326-594)

RNA sequencing applications

- Application note Kinnex full-length RNA kit for isoform sequencing (102-326-591)
- Application note Kinnex single-cell RNA kit for single-cell isoform sequencing (102-326-549)

Metagenomics applications

- Application note Kinnex 16S rRNA kit for full-length 16S sequencing (102-326-601)
- Application brief Metagenomic sequencing with HiFi reads Best Practices (102-193-684)

Targeted sequencing applications

- Application brief HiFi target enrichment Best practices (<u>102-326-515</u>)
- Application brief Targeted sequencing for amplicons Best Practices (<u>102-193-603</u>)

Revio system applications support documentation (cont.)

Application technical overviews

- Technical overview Adeno-associated virus (AAV) library preparation using SMRTbell prep kit 3.0 (<u>102-390-400</u>)
- Technical overview Kinnex kits for single-cell RNA and full-length RNA and 16S rRNA sequencing (<u>103-343-700</u>)
- Technical overview Kinnex library preparation for full-length 16S rRNA sequencing (<u>103-344-800</u>)
- Technical overview Kinnex library preparation using Kinnex full-length RNA kit (<u>103-344-700</u>)
- Technical overview Kinnex library preparation using Kinnex single-cell RNA kit (<u>103-344-600</u>)
- Technical overview Multiplexed amplicon library preparation using SMRTbell prep kit 3.0 (<u>102-395-900</u>)
- Technical overview PureTarget repeat expansion panel library preparation using PureTarget kit (<u>103-418-100</u>)
- Technical overview Whole genome and metagenome library preparation using SMRTbell prep kit 3.0 (<u>102-390-900</u>)

Appendix

Example Revio system ICS v13.3 production run schedules

Revio high-utilization schedule: 24 hr movies, 8 SMRT Cells per run

Load same time of day on Mon, Wed, Fri (3 touch points)

Day		N	/lon	day				1	Fue :	sda	/			W	edı	nes	day				Т	hur	sda	ay				Fric	lay				Sa	atur	day	/				Sur	nday	/			I	Mon	day			
Time of day	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	2 16	6 2	20	0	4	8	12	16	20	0	4	8	12 ⁻	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16 2	20 (0
Load window																															ĺ																			
Load			8												8													8																						
Robot																																																		
Stage 1					24	hr m	ovie	#1				24	hr n	novie	#5					24	hr m	iovie	#9				24 ł	nr mc	ovie #′	13				24 h	r mc	vie	¥17				24	hr m	ovie 7	#21						
Stage 2					2	4 hr	movi	ie #2	2			4	24 h	r mov	∕ie #	6				2	4 hr	mov	ie #1	0			2	4 hr i	novie	#14				24	hr r	novi	e #1	8			2	24 hr	movi	e #22	2					
Stage 3						24	hr m	ovie	#3				24	hr m	novie	e #7					24	hr m	ovie	#11				24 ł	nr mov	∕ie #	15				24 ŀ	nr mo	ovie a	#19				24	hr mo	ovie #	#23					
Stage 4						2	24 hr	mov	/ie #4	4				24 hr	r mc	vie ‡	¥8				2	24 hr	mov	rie #1	2			2	4 hr m	novie	#16				24	4 hr	movi	ie #2	20			2	24 hr	movi	e #24	4				
Data ready												1 2		3	4				:	56		7	8				9 10		11 1:	2			1	3 14		15	16				17 18	3	19	20			4	21 22		23 24

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 576 hours of automated sequencing runtime per week (144 hours × 4 stages) and 3 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

Revio high-utilization schedule: 24 hr movies, 4 SMRT Cells per run

Load same time of day on Mon-Sat (6 touch points)

Day			lor	nday	/				lues	sday	/			We	dn	esc	lay				Th	urs	day				F	rida	ay				Sa	turd	lay					Sun	day	/			N	lon	day			
Time of day	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20) ,	4	8 ′	12 1	16 2	0	0	4	8 1	2 1	6 20) 4	4 8	3 1	2 1	16	20	0	4	8	12	16	20	0	4	8	12	16 2	20 0)
Load window																			İ																															
Load			4						4						4						4						4							4																
Robot																																																		
Stage 1					24	hr m	iovie	#1				24	hr m	ovie ‡	¥5				:	24 h	r moʻ	vie #	9			2	24 hr	mov	rie #1	3			2	4 hr	mov	/ie #	±17				24	hr me	ovie ‡	¥21						
Stage 2					:	24 hr	mov	vie #2	2			2	4 hr	movi	e #6	5				24	hr m	iovie	#10				24	hr m	ovie	#14				24	hr m	novie	e #18	8			2	24 hr	movi	e #22	2					
Stage 3						24	hr m	iovie	#3				24	hr mo	ovie	#7				2	24 hr	· mo\	/ie #1	1			:	24 hr	mov	e #15	5			2	:4 hr	r mo	ovie #	¥19				24	hr mo	ovie #	‡23					
Stage 4						2	24 hr	· mov	vie #4	1			2	24 hr	mo	/ie #	8				24	hr m	novie	#12				24	hr m	ovie #	ŧ16				24	hr r	novi	e #20	0			2	4 hr	movi	e #24	1				
Data ready												1 2		3	4				5	6		78	3			9	10		11 12				13	14		15 ⁻	16				17 18		19	20			2	21 22		23 24

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 576 hours of automated sequencing runtime per week (144 hours × 4 stages) and 6 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

Revio high-utilization schedule: 30 hr movies, 8+4+8 SMRT Cells per run

Load same time of day on Mon, Wed, Fri (3 touch points)

Day		N	lone	lay				-	Tue	esda	ay			V	Neo	dne	sda	у			Т	hur	sda	ıy				Frie	day				S	Sati	urda	ay					Sur	nday	7				Мо	nda	y		
Time of day	0	4	8	12 1	16 2	20	0	4	8	12	2 1	6 2	0) 4	4	8	12 ⁻	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	2 1	62	0	0	4	8	12	16	20	0	4	8	12	16	20	0
Load window																																																			
Load			3												4													8																							
Robot																																																			
Stage 1						30 hi	r mo	vie #	#1						30 I	hr m	ovie	#5						30	hr mo	ovie #	£9					3() hr r	novi	e #1	3						30 h	r moʻ	vie #	17						
Stage 2						30) hr r	novi	ie #2	2					3	80 hr	mov	ie #(6					3(0 hr r	novie	#10						30 h	ir mo	ovie	#14						30) hr n	novie	e #18	i					
Stage 3							30 h	nr mo	ovie	#3						30	hr m	ovie	: #7						30 h	nr mo	vie #	11					3() hr	mov	ie #1	15						30 h	r mo	vie #	19					
Stage 4							3() hr	mov	vie #4	1						30 hr	mov	vie #	# 8					30) hr n	novie	#12						30	hr m	ovie	#16						30) hr r	novie	e #20)				
Data ready															1	2				34				5	6			7	8				9 10				11	12				13	14			15	5 16			1	17 18

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 600 hours of automated sequencing runtime per week (150 hours × 4 stages) and 3 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

Revio high-utilization schedule: 30 hr movies, 4 SMRT Cells per run

Load same time of day on Mon, Tue, Wed, Fri, Sat (5 touch points)

Day		ľ	Nor	nda	у				Т	ues	sday	/			V	/ed	ne	sda	У			Т	hu	rsda	ay				Fri	day				Ş	Satı	urda	ay				Su	nda	у				Мо	nday	/		
Time of day	0	4	8	12	16	5 2		0	4	8	12	16	20	0	4	8	3 1	2 1	6	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	6 20	0	4	8	12	2 16	20	0	4	8	12	16	20	0
Load window																																																			
Load			4						4	4						4													4						4																
Robot																																																			
Stage 1						30) hr i	mov	rie #1	1					;	30 h	r mo	ovie #	¥5						30	hr m	ovie ;	#9					3	0 hr r	novie	e #1:	3					30	hr mo	ovie ‡	±17						
Stage 2							30 ł	hr m	ovie	#2						30) hr	movi	e #6	\$					3	0 hr r	movie	e #10						30 h	r mc	ovie a	¥14					3	60 hr	movi	e #18	3					
Stage 3							3	0 hr	mo۱	vie #	\$3						30	hr mo	ovie	#7						30 ŀ	nr mo	vie #	11					3() hr i	movi	e #1	5					30	hr mo	ovie #	ŧ19					
Stage 4								30	hr m	novie	e #4						3	0 hr	mo۱	vie #	8					3(0 hr r	novie	#12						30 ł	nr me	ovie	#16					3	0 hr	movi	e #2()				
Data ready																1	2				34				5	6			7	8				9 10				11 1	2			1	3 14			1!	5 16			1	17 18

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 600 hours of automated sequencing runtime per week (150 hours × 4 stages) and 5 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

Revio high-utilization schedule: 12 hr movies, 4 Cells per run

Load same time of day on Mon-Sat (5 touch points)

Day			Мо	nday					Tue	sday				V	Vedn	esday	/				Thu	rsday					Fri	day					Satu	ırday		
Time of day	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20
Load window																																				
Load				4						4						4						4						4								
Robot																																				
Stage 1						12 hr m	novie #1	1			1	2 hr m	ovie #5	5				12 hr m	novie #9	9			1	2 hr m	ovie #1	3			1	2 hr m	ovie #1	7				
Stage 2						12 ł	nr movi	e #2				12 h	nr movie	e #6				12 h	r movie	e #10				12 h	r movie	#14				12 h	r movie	e #18				
Stage 3							12 hr m	novie #:	3			1	l2 hr m	ovie #7	7			1	2 hr m	ovie #1	1			1	2 hr m	ovie #1	5			1	2 hr m	ovie #1	9			
Stage 4							12 ł	nr movi	e #4				12 h	r movie	e #8				12 h	r movie	e #12				12 h	r movie	#16				12 h	r movie	#20			
Data ready								1	2 3	4				5	6 7	8				9	10 11	12				13	14 15	16				17	18 19	20		

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 240 hours of automated sequencing runtime per week (60 hours × 4 stages) and 5 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

Revio high-utilization schedule: 12 hr movies, 8+4+8+4+8 Cells per run

Load before 12pm on 8-cell run days Load between 3pm-5pm on 4-cell run days Mon-Sat (5 touch points)

Day			Мо	nday					Tue	sday				l.	Wedn	esda	у				Thu	rsday					Fri	day					Satu	ırday			Sun day
Time of day	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0	4	8	12	16	20	0
Load window																																					
Load			8	3							4				8								4				8										
Robot																								-													
Stage 1					12 hr n	novie #	1		12 hr n	novie #	5		12 hr m	novie #	9	1	2 hr m	ovie #1	3	1	2 hr m	novie #1	7	1	2 hr n	novie #2	21	1	2 hr m	ovie #2	5	1	2 hr m	ovie #2	9		
Stage 2					12	hr movi	e #2		12	nr movi	e #6		12 h	r movie	e #10		12 h	ır movie	#14		12 1	n r mo vie	e #18		12	nr movie	e #22		12 h	r movie	#26		12 h	r movie	#30		
Stage 3						12 hr n	novie #	3		12 hr m	iovie #7	7	1	2 hr m	ovie #1	1	1	2 hr mo	ovie #1	5		12 hr m	ovie #′	19		12 hr m	ovie #2	23	1	2 hr mo	ovie #2	7	1	2 hr mo	ovie #31	1	
Stage 4						12	nr movi	e #4		12 h	nr movi	e #8		12 h	r movie	e #12		12 hi	r movie	e #16		12 h	r movi	e #20		12 h	r movie	e #24		12 h	movie	#28		12 h	movie	#32	
Data ready							1	2 3	4		5	6 7	8		9	10 11	12		13	14 15	16		17	[′] 18 19	20		21	22 23	24		25	26 27	28		29 :	30 31 3	32

Example high-throughput Revio run schedule uses default run conditions (including adaptive loading) and involves 384 hours of automated sequencing runtime per week (96 hours × 4 stages) and 5 manual touchpoints to pre-load sequencing consumables onto instrument work deck for continuous operation.

PacBio

www.pacb.com

Research use only. Not for use in diagnostic procedures. © 2024 Pacific Biosciences of California, Inc. ("PacBio"). All rights reserved. Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third-party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at pacb.com/license. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio, Onso, Apton, Kinnex, PureTarget, SPRQ, and Vega are trademarks of PacBio.